Displaying 221 – 240 of 549

Showing per page

Initial traces of solutions to a one-phase Stefan problem in an infinite strip.

Daniele Andreucci, Marianne K. Korten (1993)

Revista Matemática Iberoamericana

The main result of this paper is an integral estimate valid for non-negative solutions (with no reference to initial data) u ∈ L1loc (Rn x (0,T)) to(0.1)   ut - Δ(u - 1)+ = 0,  in D'(Rn x (0,T)),for T > 0, n ≥ 1. Equation (0.1) is a formulation of a one-phase Stefan problem: in this connection u is the enthalpy, (u - 1)+ the temperature, and u = 1 the critical temperature of change of phase. Our estimate may be written in the form(0.2)  ∫Rn u(x,t) e-|x|2 / (2 (T - t)) dx ≤ C,   0 <...

Introduction to the models of phase transitions

A. Visintin (1998)

Bollettino dell'Unione Matematica Italiana

Le transizioni di fase si presentano in svariati processi fisici: un esempio tipico è la transizione solido-liquido. Il classico modello matematico, noto come problema di Stefan, tiene conto solo dello scambio del calore latente e della diffusione termica nelle fasi. Si tratta di un problema di frontiera libera, poiché l'evoluzione dell'interfaccia solido liquido è una delle incognite. In questo articolo si rivedono le formulazioni forte e debole di tale problema, e quindi si considerano alcune...

Kinetical systems—local analysis

Ladislav Adamec (1998)

Applications of Mathematics

The paper gives the answer to the question of the number and qualitative character of stationary points of an autonomous detailed balanced kinetical system.

Lie symmetry of a class of nonlinear boundary value problems with free boundaries

Roman Cherniha, Sergii Kovalenko (2011)

Banach Center Publications

A class of (1 + 1)-dimensional nonlinear boundary value problems (BVPs), modeling the process of melting and evaporation of solid materials, is studied by means of the classical Lie symmetry method. A new definition of invariance in Lie's sense for BVP is presented and applied to the class of BVPs in question.

Lipschitz stability in the determination of the principal part of a parabolic equation

Ganghua Yuan, Masahiro Yamamoto (2009)

ESAIM: Control, Optimisation and Calculus of Variations

Let y ( h ) ( t , x ) be one solution to t y ( t , x ) - i , j = 1 n j ( a i j ( x ) i y ( t , x ) ) = h ( t , x ) , 0 < t < T , x Ω with a non-homogeneous term h , and y | ( 0 , T ) × Ω = 0 , where Ω n is a bounded domain. We discuss an inverse problem of determining n ( n + 1 ) / 2 unknown functions a i j by { ν y ( h ) | ( 0 , T ) × Γ 0 , y ( h ) ( θ , · ) } 1 0 after selecting input sources h 1 , . . . , h 0 suitably, where Γ 0 is an arbitrary subboundary, ν denotes the normal derivative, 0 < θ < T and 0 . In the case of 0 = ( n + 1 ) 2 n / 2 , we prove the Lipschitz stability in the inverse problem if we choose ( h 1 , . . . , h 0 ) from a set { C 0 ( ( 0 , T ) × ω ) } 0 with an arbitrarily fixed subdomain ω Ω . Moreover we can take 0 = ( n + 3 ) n / 2 by making special choices for h , 1 0 . The proof is...

Currently displaying 221 – 240 of 549