Page 1 Next

Displaying 1 – 20 of 549

Showing per page

3D monolithic finite element approach for aero-thermics processes in industrial furnaces⋆

E. Hachem, E. Massoni, T. Coupez (2011)

ESAIM: Proceedings

We consider in this paper a mathematical and numerical model to design an industrial software solution able to handle real complex furnaces configurations in terms of geometries, atmospheres, parts positioning, heat generators and physical thermal phenomena. A three dimensional algorithm based on stabilized finite element methods (SFEM) for solving the momentum, energy, turbulence and radiation equations is presented. An immersed volume method (IVM) for thermal coupling of fluids and solids is introduced...

A class of time discrete schemes for a phase–field system of Penrose–Fife type

Olaf Klein (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper, a phase field system of Penrose–Fife type with non–conserved order parameter is considered. A class of time–discrete schemes for an initial–boundary value problem for this phase–field system is presented. In three space dimensions, convergence is proved and an error estimate linear with respect to the time–step size is derived.

A diffused interface whose chemical potential lies in a Sobolev space

Yoshihiro Tonegawa (2005)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We study a singular perturbation problem arising in the scalar two-phase field model. Given a sequence of functions with a uniform bound on the surface energy, assume the Sobolev norms W 1 , p of the associated chemical potential fields are bounded uniformly, where p > n 2 and n is the dimension of the domain. We show that the limit interface as ε tends to zero is an integral varifold with a sharp integrability condition on the mean curvature.

A domain splitting method for heat conduction problems in composite materials

Friedrich Karl Hebeker (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider a domain decomposition method for some unsteady heat conduction problem in composite structures. This linear model problem is obtained by homogenization of thin layers of fibres embedded into some standard material. For ease of presentation we consider the case of two space dimensions only. The set of finite element equations obtained by the backward Euler scheme is parallelized in a problem-oriented fashion by some noniterative overlapping domain splitting method, eventually enhanced...

A hybrid scheme to compute contact discontinuities in one-dimensional Euler systems

Thierry Gallouët, Jean-Marc Hérard, Nicolas Seguin (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The present paper is devoted to the computation of single phase or two phase flows using the single-fluid approach. Governing equations rely on Euler equations which may be supplemented by conservation laws for mass species. Emphasis is given on numerical modelling with help of Godunov scheme or an approximate form of Godunov scheme called VFRoe-ncv based on velocity and pressure variables. Three distinct classes of closure laws to express the internal energy in terms of pressure, density and additional...

A hybrid scheme to compute contact discontinuities in one-dimensional Euler systems

Thierry Gallouët, Jean-Marc Hérard, Nicolas Seguin (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The present paper is devoted to the computation of single phase or two phase flows using the single-fluid approach. Governing equations rely on Euler equations which may be supplemented by conservation laws for mass species. Emphasis is given on numerical modelling with help of Godunov scheme or an approximate form of Godunov scheme called VFRoe-ncv based on velocity and pressure variables. Three distinct classes of closure laws to express the internal energy in terms of pressure, density...

Currently displaying 1 – 20 of 549

Page 1 Next