Displaying 281 – 300 of 549

Showing per page

Motion of spirals by crystalline curvature

Hitoshi Imai, Naoyuki Ishimura, TaKeo Ushijima (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Modern physics theories claim that the dynamics of interfaces between the two-phase is described by the evolution equations involving the curvature and various kinematic energies. We consider the motion of spiral-shaped polygonal curves by its crystalline curvature, which deserves a mathematical model of real crystals. Exploiting the comparison principle, we show the local existence and uniqueness of the solution.

Motion planning for a nonlinear Stefan problem

William B. Dunbar, Nicolas Petit, Pierre Rouchon, Philippe Martin (2003)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we consider a free boundary problem for a nonlinear parabolic partial differential equation. In particular, we are concerned with the inverse problem, which means we know the behavior of the free boundary a priori and would like a solution, e.g. a convergent series, in order to determine what the trajectories of the system should be for steady-state to steady-state boundary control. In this paper we combine two issues: the free boundary (Stefan) problem with a quadratic nonlinearity....

Motion Planning for a nonlinear Stefan Problem

William B. Dunbar, Nicolas Petit, Pierre Rouchon, Philippe Martin (2010)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we consider a free boundary problem for a nonlinear parabolic partial differential equation. In particular, we are concerned with the inverse problem, which means we know the behavior of the free boundary a priori and would like a solution, e.g. a convergent series, in order to determine what the trajectories of the system should be for steady-state to steady-state boundary control. In this paper we combine two issues: the free boundary (Stefan) problem with a quadratic nonlinearity....

Non-Fourier heat removal from hot nanosystems through graphene layer

A. Sellitto, F.X. Alvarez (2012)

Nanoscale Systems: Mathematical Modeling, Theory and Applications

Nonlocal effects on heat transport beyond a simple Fourier description are analyzed in a thermodynamical model. In the particular case of hot nanosystems cooled through a graphene layer, it is shown that these effects may increase in a ten percent the amount of removed heat, as compared with classical predictions based on the Fourier law.

Nonlinear Time-Fractional Differential Equations in Combustion Science

Pagnini, Gianni (2011)

Fractional Calculus and Applied Analysis

MSC 2010: 34A08 (main), 34G20, 80A25The application of Fractional Calculus in combustion science to model the evolution in time of the radius of an isolated premixed flame ball is highlighted. Literature equations for premixed flame ball radius are rederived by a new method that strongly simplifies previous ones. These equations are nonlinear time-fractional differential equations of order 1/2 with a Gaussian underlying diffusion process. Extending the analysis to self-similar anomalous diffusion...

Non-Trapping sets and Huygens Principle

Dario Benedetto, Emanuele Caglioti, Roberto Libero (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider the evolution of a set Λ 2 according to the Huygens principle: i.e. the domain at time t>0, Λt, is the set of the points whose distance from Λ is lower than t. We give some general results for this evolution, with particular care given to the behavior of the perimeter of the evoluted set as a function of time. We define a class of sets (non-trapping sets) for which the perimeter is a continuous function of t, and we give an algorithm to approximate the evolution. Finally we restrict...

Currently displaying 281 – 300 of 549