Displaying 201 – 220 of 241

Showing per page

Supersymmetry and Ghosts in Quantum Mechanics

Robert, Didier (2008)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: 81Q60, 35Q40.A standard supersymmetric quantum system is defined by a Hamiltonian [^H] = ½([^Q]*[^Q] +[^Q][^Q]*), where the super-charge [^Q] satisfies [^Q]2 = 0, [^Q] commutes with [^H]. So we have [^H] ≥ 0 and the quantum spectrum of [^H] is non negative. On the other hand Pais-Ulhenbeck proposed in 1950 a model in quantum-field theory where the d'Alembert operator [¯] = [(∂2)/( ∂t2)] − Δx is replaced by fourth order operator [¯]([¯] + m2), in order to...

Supersymmetry, Witten complex and asymptotics for directional Lyapunov exponents in 𝐙 d

Wei-Min Wang (1999)

Journées équations aux dérivées partielles

By using a supersymmetric gaussian representation, we transform the averaged Green's function for random walks in random potentials into a 2-point correlation function of a corresponding lattice field theory. We study the resulting lattice field theory using the Witten laplacian formulation. We obtain the asymptotics for the directional Lyapunov exponents.

Supporting sequences of pure states on JB algebras

Jan Hamhalter (1999)

Studia Mathematica

We show that any sequence ( φ n ) of mutually orthogonal pure states on a JB algebra A such that ( φ n ) forms an almost discrete sequence in the relative topology induced by the primitive ideal space of A admits a sequence ( a n ) consisting of positive, norm one, elements of A with pairwise orthogonal supports which is supporting for ( φ n ) in the sense of φ n ( a n ) = 1 for all n. Moreover, if A is separable then ( a n ) can be taken such that ( φ n ) is uniquely determined by the biorthogonality condition φ n ( a n ) = 1 . Consequences of this result improving...

Sur le spectre semi-classique d’un système intégrable de dimension 1 autour d’une singularité hyperbolique

Olivier Lablée (2010)

Annales de la faculté des sciences de Toulouse Mathématiques

Dans cette article on décrit le spectre semi-classique d’un opérateur de Schrödinger sur avec un potentiel type double puits. La description qu’on donne est celle du spectre autour du maximum local du potentiel. Dans la classification des singularités de l’application moment d’un système intégrable, le double puits représente le cas des singularités non-dégénérées de type hyperbolique.

Sur le spectre semi-classique d’un système intégrable de dimension 1 autour d’une singularité hyperbolique

Olivier Lablée (2007/2008)

Séminaire de théorie spectrale et géométrie

Dans cet article on décrit le spectre semi-classique d’un opérateur de Schrödinger sur avec un potentiel type double puits. La description qu’on donne est celle du spectre autour du maximum local du potentiel. Dans la classification des singularités de l’application moment d’un système intégrable, le double puits représente le cas des singularités non-dégénérées de type hyperbolique.

Sur les mesures de Wigner.

Pierre-Louis Lions, Thierry Paul (1993)

Revista Matemática Iberoamericana

We study the properties of the Wigner transform for arbitrary functions in L2 or for hermitian kernels like the so-called density matrices. And we introduce some limits of these transforms for sequences of functions in L2, limits that correspond to the semi-classical limit in Quantum Mechanics. The measures we obtain in this way, that we call Wigner measures, have various mathematical properties that we establish. In particular, we prove they satisfy, in linear situations (Schrödinger equations)...

Currently displaying 201 – 220 of 241