The singularities of Yang-Mills connections for bundles on a surface.
The geometric description of Yang–Mills theories and their configuration space is reviewed. The presence of singularities in M is explained and some of their properties are described. The singularity structure is analysed in detail for structure group SU(2). This review is based on [28].
The motivation of this article is double. First of all we provide a geometrical framework to the application of the smooth continuation method in optimal control, where the concept of conjugate points is related to the convergence of the method. In particular, it can be applied to the analysis of the global optimality properties of the geodesic flows of a family of Riemannian metrics. Secondly, this study is used to complete the analysis of two-level dissipative quantum systems, where the system...
The motivation of this article is double. First of all we provide a geometrical framework to the application of the smooth continuation method in optimal control, where the concept of conjugate points is related to the convergence of the method. In particular, it can be applied to the analysis of the global optimality properties of the geodesic flows of a family of Riemannian metrics. Secondly, this study is used to complete the analysis of two-level dissipative quantum systems, where the system...
We consider equivariant solutions of Schrödinger equations on C∖{0} with harmonic oscillator potentials. We determine the spaces of equivariant quantum states in three cases: for an isotropic and anisotropic harmonic oscillator potential centered at 0, and for a potential not centered at 0.
We shall consider the Schrödinger operators on with the magnetic field given by a nonnegative constant field plus random magnetic fields of the Anderson type or of the Poisson-Anderson type. We shall investigate the spectrum of these operators by the method of the admissible potentials by Kirsch-Martinelli. Moreover, we shall prove the lower Landau levels are infinitely degenerated eigenvalues when the constant field is sufficiently large, by estimating the growth order of the eigenfunctions...
In this paper we address a question posed by M. and T. Hoffmann-Ostenhof, which concerns the total spin of the ground state of an atom or molecule. Each electron is given a value for spin, ±1/2. The total spin is the sum of the individual spins.
In this work we consider non-relativistic quantum mechanics, obtained from a classical configuration space of indistinguishable particles. Following an approach proposed in [8], wave functions are regarded as elements of suitable projective modules over . We take furthermore into account the -Theory point of view (cf. [HPRS,S]) where the role of group action is particularly emphasized. As an example illustrating the method, the case of two particles is worked out in detail. Previous works (cf....
This review article intends to introduce the reader to non-integrable geometric structures on Riemannian manifolds and invariant metric connections with torsion, and to discuss recent aspects of mathematical physics—in particular superstring theory—where these naturally appear. Connections with skew-symmetric torsion are exhibited as one of the main tools to understand non-integrable geometries. To this aim a a series of key examples is presented and successively dealt with using the notions of...
Characteristic properties of corings with a grouplike element are analysed. Associated differential graded rings are studied. A correspondence between categories of comodules and flat connections is established. A generalisation of the Cuntz-Quillen theorem relating existence of connections in a module to projectivity of this module is proven.
We give an explicit formula for the symbol of a function of an operator. Given a pseudo-differential operator on with symbol and a smooth function , we obtain the symbol of in terms of . As an application, Bohr-Sommerfeld quantization rules are explicitly calculated at order 4 in .
The symmetry operators for Klein-Gordon equation on quantum Minkowski space are derived and their algebra is studied. The explicit form of the Leibniz rules for derivatives and variables for the case Z=0 is given. It is applied then with symmetry operators to the construction of the conservation law and the explicit form of conserved currents for Klein-Gordon equation.
We generalize the theory of positive diagonal scalings of real positive definite matrices to complex diagonal scalings of complex positive definite matrices. A matrix A is a diagonal scaling of a positive definite matrix M if there exists an invertible complex diagonal matrix D such that A = D*MD and where every row and every column of A sums to one. We look at some of the key properties of complex diagonal scalings and we conjecture that every n by n positive definite matrix has at most 2n−1 scalings...