Recent developments in instantons in noncommutative .
We give a survey of results on the Lieb-Thirring inequalities for the eigenvalue moments of Schrödinger operators. In particular, we discuss the optimal values of the constants therein for higher dimensions. We elaborate on certain generalisations and some open problems as well.
In this paper, we review some of our recent results in the study of the dynamics of interacting Bose gases in the Gross-Pitaevskii (GP) limit. Our investigations focus on the well-posedness of the associated Cauchy problem for the infinite particle system described by the GP hierarchy.
We define the Bloch spectrum of a quantum graph to be the map that assigns to each element in the deRham cohomology the spectrum of an associated magnetic Schrödinger operator. We show that the Bloch spectrum determines the Albanese torus, the block structure and the planarity of the graph. It determines a geometric dual of a planar graph. This enables us to show that the Bloch spectrum indentifies and completely determines planar -connected quantum graphs.
The problem of recovering the singularities of a potential from backscattering data is studied. Let be a smooth precompact domain in which is convex (or normally accessible). Suppose with and conormal to the boundary of and supported inside then if the backscattering data of and are equal up to smoothing, we show that is smooth.
The main aim of our lectures is to give a pedagogical introduction to various mathematical formalisms used to describe open quantum systems: completely positive semigroups, dilations of semigroups, quantum Langevin dynamics and the so-called Pauli-Fierz Hamiltonians. We explain two kinds of the weak coupling limit. Both of them show that Hamiltonian dynamics of a small quantum system interacting with a large resevoir can be approximated by simpler dynamics. The better known reduced weak coupling...
This paper explores in some detail a recent proposal (the Rieffel induction/refined algebraic quantization scheme) for the quantization of constrained gauge systems. Below, the focus is on systems with a single constraint and, in this context, on the uniqueness of the construction. While in general the results depend heavily on the choices made for certain auxiliary structures, an additional physical argument leads to a unique result for typical cases. We also discuss the 'superselection laws' that...
We discuss the multi-configuration time-dependent Hartree (MCTDH) method for the approximation of the time-dependent Schrödinger equation in quantum molecular dynamics. This method approximates the high-dimensional nuclear wave function by a linear combination of products of functions depending only on a single degree of freedom. The equations of motion, obtained via the Dirac-Frenkel time-dependent variational principle, consist of a coupled system of low-dimensional nonlinear partial differential...
We outline our recent results on bicovariant differential calculi on co-quasitriangular Hopf algebras, in particular that if is a quantum tangent space (quantum Lie algebra) for a CQT Hopf algebra A, then the space is a braided Lie algebra in the category of A-comodules. An important consequence of this is that the universal enveloping algebra is a bialgebra in the category of A-comodules.
In this paper, the authors introduce the notion of conditional expectation of an observable on a logic with respect to a sublogic, in a state , relative to an element of the logic. This conditional expectation is an analogue of the expectation of an integrable function on a probability space.
In this paper we carry on the investigation of partially additive states on quantum logics (see [2], [5], [7], [8], [11], [12], [15], [18], etc.). We study a variant of weak states — the states which are additive with respect to a given Boolean subalgebra. In the first result we show that there are many quantum logics which do not possess any 2-additive central states (any logic possesses an abundance of 1-additive central state — see [12]). In the second result we construct a finite 3-homogeneous...