Solutions globales des systèmes de Dirac-Klein-Gordon
In this paper we prove the existence of infinitely many solutions of the Dirac-Fock equations with electrons turning around a nucleus of atomic charge , satisfying and , where is the fundamental constant of the electromagnetic interaction (approximately 1/137). This work is an improvement of an article of Esteban-Séré, where the same result was proved under more restrictive assumptions on .
This paper presents some manner of characterization of Boolean rings. These algebraic systems one can also characterize by means of some distributivities satisfied in GBbi-QRs.
* Supported by COMBSTRU Research Training Network HPRN-CT-2002-00278 and the Bulgarian National Science Foundation under Grant MM-1304/03.Additive code C over GF(4) of length n is an additive subgroup of GF(4)n. It is well known [4] that the problem of finding stabilizer quantum error-correcting codes is transformed into problem of finding additive self-orthogonal codes over the Galois field GF(4) under a trace inner product. Our purpose is to construct good additive self-dual codes of length 13...
This work is devoted to generalizing the Lebesgue decomposition and the Radon-Nikodym theorem to Gleason measures. For that purpose we introduce a notion of integral for operators with respect to a Gleason measure. Finally, we give an example showing that the Gleason theorem does not hold in non-separable Hilbert spaces.
We clarify some aspects of quantum group gauge theory and its recent generalisations (by T. Brzeziński and the author) to braided group gauge theory and coalgebra gauge theory. We outline the diagrammatic version of the braided case. The bosonisation of any braided group provides us a trivial principal bundle in three ways.
Given a Hilbert space with a Borel probability measure , we prove the -dissipativity in of a Kolmogorov operator that is a perturbation, not necessarily of gradient type, of an Ornstein-Uhlenbeck operator.