The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 101 –
120 of
1377
A stochastic system of particles is considered in which the sizes of the particles increase by successive binary mergers with the constraint that each coagulation event involves a particle with minimal size. Convergence of a suitably renormalized version of this process to a deterministic hydrodynamical limit is shown and the time evolution of the minimal size is studied for both deterministic and stochastic models.
The dynamics of dendritic growth of a crystal in an undercooled melt is
determined by macroscopic diffusion-convection of heat and by capillary forces
acting on the nanometer scale of the solid-liquid interface width.
Its modelling is useful for instance in processing techniques based on casting.
The phase-field method is widely used to study evolution of such microstructural phase transformations on
a continuum level; it couples the energy equation to a phenomenological Allen-Cahn/Ginzburg-Landau
equation...
A stochastic generalized Born (GB) solver is presented which can give predictions of energies arbitrarily close to those that would be given by exact effective GB radii, and, unlike analytical GB solvers, these errors are Gaussian with estimates that can be easily obtained from the algorithm. This method was tested by computing the electrostatic solvation energies (ΔGsolv) and the electrostatic binding energies (ΔGbind) of a set of DNA-drug complexes, a set of protein-drug complexes, a set of protein-protein...
We consider the coarse-graining of a lattice system with continuous spin variable. In the first part, two abstract results are established: sufficient conditions for a logarithmic Sobolev inequality with constants independent of the dimension (Theorem 3) and sufficient conditions for convergence to the hydrodynamic limit (Theorem 8). In the second part, we use the abstract results to treat a specific example, namely the Kawasaki dynamics with Ginzburg–Landau-type potential.
Controlling growth at crystalline surfaces requires a detailed and quantitative understanding of the thermodynamic and kinetic parameters governing mass transport. Many of these parameters can be determined by analyzing the isothermal wandering of steps at a vicinal [“step-terrace”] type surface [for a recent review see [4]]. In the case of crystals one finds that these meanderings develop larger amplitudes as the equilibrium temperature is raised (as is consistent with the statistical mechanical...
Controlling growth at crystalline surfaces requires a detailed and quantitative understanding
of the thermodynamic and kinetic parameters governing mass transport. Many of these
parameters can be determined by analyzing the isothermal wandering of steps at a vicinal
[“step-terrace”] type surface [for a recent review see [4]]. In the case of orthodox
crystals one finds that these meanderings develop larger amplitudes as the equilibrium
temperature is raised (as is consistent with the statistical...
This is a report on project initiated with Anne Nouri [3], presently in progress, with the collaboration of Nicolas Besse [2] ([2] is mainly the material of this report) . It concerns a version of the Vlasov equation where the self interacting potential is replaced by a Dirac mass. Emphasis is put on the relations between the linearized version, the full non linear problem and also on natural connections with several other equations of mathematical physic.
We investigate the steady transport equation
in various domains (bounded or unbounded) with smooth noncompact boundaries. The functions are supposed to be small in appropriate norms. The solution is studied in spaces of Sobolev type (classical Sobolev spaces, Sobolev spaces with weights, homogeneous Sobolev spaces, dual spaces to Sobolev spaces). The particular stress is put onto the problem to extend the results to as less regular vector fields , as possible (conserving the requirement of...
We study the discrete Schrödinger operator in with the surface quasi periodic potential , where . We first discuss a proof of the pure absolute continuity of the spectrum of on the interval (the spectrum of the discrete laplacian) in the case where the components of are rationally independent. Then we show that in this case the generalized eigenfunctions have the form of the “volume” waves, i.e. of the sum of the incident plane wave and reflected from the hyper-plane waves, the form...
Žemlička, Jan: Structure of steady rings.
Zemek, Martin: On some aspects of subdifferentiality of functions on Banach spaces.
Hlubinka, Daniel: Construction of Markov kernels with application for moment problem solution.
Somberg, Petr: Properties of the BGG resolution on the spheres.
Krump, Lukáš: Construction of Bernstein-Gelfand-Gelfand for almost hermitian symmetric structures.
Kolář, Jan: Simultaneous extension operators. Porosity.
Currently displaying 101 –
120 of
1377