Displaying 1181 – 1200 of 1376

Showing per page

The local relaxation flow approach to universality of the local statistics for random matrices

László Erdős, Benjamin Schlein, Horng-Tzer Yau, Jun Yin (2012)

Annales de l'I.H.P. Probabilités et statistiques

We present a generalization of the method of the local relaxation flow to establish the universality of local spectral statistics of a broad class of large random matrices. We show that the local distribution of the eigenvalues coincides with the local statistics of the corresponding Gaussian ensemble provided the distribution of the individual matrix element is smooth and the eigenvalues {xj}j=1N are close to their classical location {γj}j=1N determined by the limiting density of eigenvalues. Under...

The magnetization at high temperature for a p-spin interaction model with external field

David Márquez-Carreras (2007)

Applicationes Mathematicae

This paper is devoted to a detailed and rigorous study of the magnetization at high temperature for a p-spin interaction model with external field, generalizing the Sherrington-Kirkpatrick model. In particular, we prove that σ i (the mean of a spin with respect to the Gibbs measure) converges to an explicitly given random variable, and that ⟨σ₁⟩,...,⟨σₙ⟩ are asymptotically independent.

The Markovian hyperbolic triangulation

Nicolas Curien, Wendelin Werner (2013)

Journal of the European Mathematical Society

We construct and study the unique random tiling of the hyperbolic plane into ideal hyperbolic triangles (with the three corners located on the boundary) that is invariant (in law) with respect to Möbius transformations, and possesses a natural spatial Markov property that can be roughly described as the conditional independence of the two parts of the triangulation on the two sides of the edge of one of its triangles.

The mean-field limit for the dynamics of large particle systems

François Golse (2003)

Journées équations aux dérivées partielles

This short course explains how the usual mean-field evolution PDEs in Statistical Physics - such as the Vlasov-Poisson, Schrödinger-Poisson or time-dependent Hartree-Fock equations - are rigorously derived from first principles, i.e. from the fundamental microscopic models that govern the evolution of large, interacting particle systems.

The non-linear macroscopic model of Relativistic Extended Thermodynamics of an ultra-relativistic gas

Francesco Borghero, Sebastiano Pennisi (2004)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

The model for an ultra-relativistic gas is here considered in the framework of Extended Thermodynamics. The closure, satisfying exactly the principles of relativity and of entropy, is obtained by following the approach «at a macroscopic level». Our results are compared with the ones of the kinetic approach.

Currently displaying 1181 – 1200 of 1376