Displaying 181 – 200 of 498

Showing per page

Hidden symmetries of the gravitational contact structure of the classical phase space of general relativistic test particle

Josef Janyška (2014)

Archivum Mathematicum

The phase space of general relativistic test particle is defined as the 1-jet space of motions. A Lorentzian metric defines the canonical contact structure on the odd-dimensional phase space. In the paper we study infinitesimal symmetries of the gravitational contact phase structure which are not generated by spacetime infinitesimal symmetries, i.e. they are hidden symmetries. We prove that Killing multivector fields admit hidden symmetries of the gravitational contact phase structure and we give...

Homogeneous systems of higher-order ordinary differential equations

Mike Crampin (2010)

Communications in Mathematics

The concept of homogeneity, which picks out sprays from the general run of systems of second-order ordinary differential equations in the geometrical theory of such equations, is generalized so as to apply to equations of higher order. Certain properties of the geometric concomitants of a spray are shown to continue to hold for higher-order systems. Third-order equations play a special role, because a strong form of homogeneity may apply to them. The key example of a single third-order equation...

Injectivity radius and optimal regularity of Lorentzian manifolds with bounded curvature

Philippe G. LeFloch (2007/2008)

Séminaire de théorie spectrale et géométrie

We review recent work on the local geometry and optimal regularity of Lorentzian manifolds with bounded curvature. Our main results provide an estimate of the injectivity radius of an observer, and a local canonical foliations by CMC (Constant Mean Curvature) hypersurfaces, together with spatially harmonic coordinates. In contrast with earlier results based on a global bound for derivatives of the curvature, our method requires only a sup-norm bound on the curvature near the given observer.

Integrability and Einstein's equations

N. Woodhouse (1997)

Banach Center Publications

1. Introduction. In recent years, there has been considerable interest in Oxford and elsewhere in the connections between Einstein's equations, the (anti-) self-dual Yang-Mills (SDYM) equations, and the theory of integrable systems. The common theme running through this work is that, to a greater or lesser extent, all three areas involve questions that can be addressed by twistor methods. In this paper, I shall review progress, with particular emphasis on the known and potential applications in...

Inverse problem for networks of laser interferometers

Piotr Jaranowski (1997)

Banach Center Publications

Estimation of the parameters of the gravitational-wave signal from a coalescing binary by a network of laser interferometers is considered. A generalization of the solution of the inverse problem found previously for the network of 3 detectors to the network of N detectors is given. Maximum likelihood and least squares estimators are applied to obtain the solution. Accuracy of the estimation of the parameters is assessed from the inverse of the Fisher information matrix. The results of the Monte...

Currently displaying 181 – 200 of 498