Page 1

Displaying 1 – 9 of 9

Showing per page

Mathematical Model of Blood Flow in an Anatomically Detailed Arterial Network of the Arm

Sansuke M. Watanabe, Pablo J. Blanco, Raúl A. Feijóo (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

A distributed-parameter (one-dimensional) anatomically detailed model for the arterial network of the arm is developed in order to carry out hemodynamics simulations. This work focuses on the specific aspects related to the model set-up. In this regard, stringent anatomical and physiological considerations have been pursued in order to construct the arterial topology and to provide a systematic estimation of the involved parameters. The model comprises 108 arterial segments, with 64 main arteries...

Mathematical model of mixing in Rumen

Wiesław Szlenk (1996)

Applicationes Mathematicae

A mathematical model of mixing food in rumen is presented. The model is based on the idea of the Baker Transformation, but exhibits some different phenomena: the transformation does not mix points at all in some parts of the phase space (and under some conditions mixes them strongly in other parts), as observed in ruminant animals.

Mathematical model of tumour cord growth along the source of nutrient

S. Astanin, A. Tosin (2010)

Mathematical Modelling of Natural Phenomena

A mathematical model of the tumour growth along a blood vessel is proposed. The model employs the mixture theory approach to describe a tissue which consists of cells, extracellular matrix and liquid. The growing tumour tissue is supposed to be surrounded by the host tissue. Tumours where complete oxydation of glucose prevails are considered. Special attention is paid to consistent description of oxygen consumption and growth processes based on the energy balance. A finite difference numerical...

Modelling of Dynamic Problems in Biomechanics

I. Petrov, Y. Bolotskikh, A. Vasyukov (2011)

Mathematical Modelling of Natural Phenomena

This paper is devoted to solving of dynamic problems in biomechanics that require detailed study of fast processes. Numerical method of characteristics is used to model the temporal development of the processes with high accuracy.

Multiphase and Multiscale Trends in Cancer Modelling

L. Preziosi, A. Tosin (2009)

Mathematical Modelling of Natural Phenomena

While drawing a link between the papers contained in this issue and those present in a previous one (Vol. 2, Issue 3), this introductory article aims at putting in evidence some trends and challenges on cancer modelling, especially related to the development of multiphase and multiscale models.

Currently displaying 1 – 9 of 9

Page 1