Displaying 161 – 180 of 566

Showing per page

A note on impulsive control of Feller processes with costly information

Dariusz Gątarek (1990)

Aplikace matematiky

The paper deals with the optimal inspections and maintenance problem with costly information for a Markov process with positive discount factor. The associated dynamic programming equation is a quasi-variational inequality with first order differential terms. In this paper we study its different formulations: strong, visousity and evolutionary. The case of impulsive control of purely jump Markov processes is studied as a special case.

A note on some characterization of invariant zeros in singular systems and algebraic criteria of nondegeneracy

Jerzy Tokarzewski (2004)

International Journal of Applied Mathematics and Computer Science

The question how the classical definition of the Smith zeros of an LTI continuous-time singular control system can be generalized and related to state-space methods is discussed. The zeros are defined as those complex numbers for which there exists a zero direction with a nonzero state-zero direction. Such a definition allows an infinite number of zeros (then the system is called degenerate). A sufficient and necessary condition for nondegeneracy is formulated. Moreover, some characterization of...

A note on the optimal portfolio problem in discrete processes

Naoyuki Ishimura, Yuji Mita (2009)

Kybernetika

We deal with the optimal portfolio problem in discrete-time setting. Employing the discrete Itô formula, which is developed by Fujita, we establish the discrete Hamilton–Jacobi–Bellman (d-HJB) equation for the value function. Simple examples of the d-HJB equation are also discussed.

A novel algorithm for the modeling of complex processes

José de Jesús Rubio, Edwin Lughofer, Angelov Plamen, Juan Francisco Novoa, Jesús A. Meda-Campaña (2018)

Kybernetika

In this investigation, a new algorithm is developed for the updating of a neural network. It is concentrated in a fuzzy transition between the recursive least square and extended Kalman filter algorithms with the purpose to get a bounded gain such that a satisfactory modeling could be maintained. The advised algorithm has the advantage compared with the mentioned methods that it eludes the excessive increasing or decreasing of its gain. The gain of the recommended algorithm is uniformly stable and...

A novel continuous model to approximate time Petri nets: modelling and analysis

Tianlong Gu, Rongsheng Dong (2005)

International Journal of Applied Mathematics and Computer Science

In order to approximate discrete-event systems in which there exist considerable states and events, David and Alla define a continuous Petri net (CPN). So far, CPNs have been a useful tool not only for approximating discrete-event systems but also for modelling continuous processes. Due to different ways of calculating instantaneous firing speeds of transitions, various continuous Petri net models, such as the CCPN (constant speed CPN), VCPN (variable speed CPN) and the ACPN (asymptotic CPN), have...

A novel fuzzy c-regression model algorithm using a new error measure and particle swarm optimization

Moêz Soltani, Abdelkader Chaari, Fayçal Ben Hmida (2012)

International Journal of Applied Mathematics and Computer Science

This paper presents a new algorithm for fuzzy c-regression model clustering. The proposed methodology is based on adding a second regularization term in the objective function of a Fuzzy C-Regression Model (FCRM) clustering algorithm in order to take into account noisy data. In addition, a new error measure is used in the objective function of the FCRM algorithm, replacing the one used in this type of algorithm. Then, particle swarm optimization is employed to finally tune parameters of the obtained...

A novel interval arithmetic approach for solving differential-algebraic equations with VALENCIA-IVP

Andreas Rauh, Michael Brill, Clemens Günther (2009)

International Journal of Applied Mathematics and Computer Science

The theoretical background and the implementation of a new interval arithmetic approach for solving sets of differentialalgebraic equations (DAEs) are presented. The proposed approach computes guaranteed enclosures of all reachable states of dynamical systems described by sets of DAEs with uncertainties in both initial conditions and system parameters. The algorithm is based on VALENCIA-IVP, which has been developed recently for the computation of verified enclosures of the solution sets of initial...

A novel LMI-based robust model predictive control for DFIG-based wind energy conversion systems

Amir Gholami, Alireza Sahab, Abdolreza Tavakoli, Behnam Alizadeh (2019)

Kybernetika

The optimal and reliable performance of doubly fed induction generator is essential for the efficient and optimal operation of wind energy conversion systems. This paper considers the nonlinear dynamic of a DFIG linked to a power grid and presents a new robust model predictive control technique of active and reactive power by the use of the linear matrix inequality in DFIG-based WECS. The control law is obtained through the LMI-based model predictive control that allows considering both economic...

A null controllability data assimilation methodology applied to a large scale ocean circulation model

Galina C. García, Axel Osses, Jean Pierre Puel (2011)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Data assimilation refers to any methodology that uses partial observational data and the dynamics of a system for estimating the model state or its parameters. We consider here a non classical approach to data assimilation based in null controllability introduced in [Puel, C. R. Math. Acad. Sci. Paris 335 (2002) 161–166] and [Puel, SIAM J. Control Optim. 48 (2009) 1089–1111] and we apply it to oceanography. More precisely, we are interested in developing this methodology to recover the unknown final...

A null controllability data assimilation methodology applied to a large scale ocean circulation model*

Galina C. García, Axel Osses, Jean Pierre Puel (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

Data assimilation refers to any methodology that uses partial observational data and the dynamics of a system for estimating the model state or its parameters. We consider here a non classical approach to data assimilation based in null controllability introduced in [Puel, C. R. Math. Acad. Sci. Paris335 (2002) 161–166] and [Puel, SIAM J. Control Optim.48 (2009) 1089–1111] and we apply it to oceanography. More precisely, we are interested in developing this methodology to recover the unknown final...

A numerical method for the solution of the nonlinear observer problem

Rehák, Branislav (2021)

Programs and Algorithms of Numerical Mathematics

The central part in the process of solving the observer problem for nonlinear systems is to find a solution of a partial differential equation of first order. The original method proposed to solve this equation used expansions into Taylor polynomials, however, it suffers from rather restrictive assumptions while the approach proposed here allows to generalize these requirements. Its characteristic feature is that it is based on the application of the Finite Element Method. An illustrating example...

Currently displaying 161 – 180 of 566