The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The receding horizon control strategy for dynamical systems posed in infinite dimensional spaces is analysed. Its stabilising property is verified provided control Lyapunov functionals are used as terminal penalty functions. For closed loop dissipative systems the terminal penalty can be chosen as quadratic functional. Applications to the Navier–Stokes equations, semilinear wave equations and reaction diffusion systems are given.
The receding horizon control strategy for
dynamical systems posed in infinite dimensional spaces is analysed. Its
stabilising property is verified provided control
Lyapunov functionals are used as terminal penalty functions.
For closed loop dissipative systems the terminal penalty can
be chosen as quadratic functional. Applications to the Navier–Stokes
equations, semilinear wave equations and reaction diffusion systems are given.
We consider a tree-shaped network of vibrating elastic strings, with feedback acting on the root of the tree. Using the d’Alembert representation formula, we show that the input-output map is bounded, i.e. this system is a well-posed system in the sense of G. Weiss (Trans. Am. Math. Soc. 342 (1994), 827–854). As a consequence we prove that the strings networks are not exponentially stable in the energy space. Moreover, we give explicit polynomial decay estimates valid for regular initial data.
The purpose of this paper is to exhibit a connection between the Hermitian solutions of matrix Riccati equations and a class of finite dimensional reproducing kernel Krein spaces. This connection is then exploited to obtain minimal factorizations of rational matrix valued functions that are J-unitary on the imaginary axis in a natural way.
We briefly present the difficulties arising when dealing with the controllability of the discrete wave equation, which are, roughly speaking, created by high-frequency spurious waves which do not travel. It is by now well-understood that such spurious waves can be dealt with by applying some convenient filtering technique. However, the scale of frequency in which we can guarantee that none of these non-traveling waves appears is still unknown in general. Though, using Hautus tests, which read the...
Using an abstract result on Riesz basis generation for discrete operators in general Hilbert spaces, we show, in this article, that the generalized eigenfunctions of an Euler-Bernoulli beam equation with joint linear feedback control form a Riesz basis for the state space. The spectrum-determined growth condition is hence obtained. Meanwhile, the exponential stability as well as the asymptotic expansion of eigenvalues are also readily obtained by a straightforward computation.
This paper treats the question of robust control of chaos in modified FitzHugh-Nagumo neuron model under external electrical stimulation based on internal model principle. We first present the solution of the global robust output regulation problem for output feedback system with nonlinear exosystem. Then we show that the robust control problem for the modified FitzHugh-Nagumo neuron model can be formulated as the global robust output regulation problem and the solvability conditions for the output...
The paper addresses the problem of the robust output feedback controller design with a guaranteed cost and parameter dependent Lyapunov function for linear continuous time polytopic systems. Two design methods based on improved robust stability conditions are proposed. Numerical examples are given to illustrate the effectiveness of the proposed methods. The obtained results are compared with other three design procedures.
This paper investigates the problem of observer-based finite-time control for the uncertain discrete-time systems with nonlinear perturbations and time-varying delay. The Luenberger observer is designed to measure the system state. The observer-based controller is constructed. By constructing an appropriated Lyapunov-.Krasovskii functional, sufficient conditions are derived to ensure the resulting closed-loop system is finite-time bounded via observer-based control. The observer-based controller...
This paper presents a novel robust optimal control approach for attitude stabilization of a flexible spacecraft in the presence of external disturbances. An optimal control law is formulated by using concepts of inverse optimal control, proportional-integral-derivative control and a control Lyapunov function. A modified extended state observer is used to compensate for the total disturbances. High-gain and second order sliding mode algorithms are merged to obtain the proposed modified extended state...
Considerable safety benefits are achieved by robustly decoupling the lateral and yaw motions of a car with active steering. Robust unilateral decoupling requires an actuator to generate an additional front wheel steering angle. However, introducing actuators to closed loop systems may cause limit cycles due to actuator saturation and rate limits. Such limit cycles are intolerable w.r.t. safety and comfort. By introducing a simple nonlinear modification of the control law, this paper proposes a remedy...
The nonlinear control techniques are applied to the model of rotary inverted pendulum. The model has two degrees of freedom and is not exactly linearizable. The goal is to control output trajectory of the rotary inverted pendulum asymptotically along a desired reference. Moreover, the designed controller should be robust with respect to specified perturbations and parameters uncertainties. A combination of techniques based on nonlinear normal forms, output regulation and sliding mode approach is...
Currently displaying 1 –
13 of
13