The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 101 –
120 of
148
This paper proposes new stability conditions for interval type-2 fuzzy-model-based (FMB) control systems. The type-1 T-S fuzzy model has been widely studied because it can represent a wide class of nonlinear systems. Many favorable results for type-1 T-S fuzzy model have been reported. However, most of conclusions for type-1 T-S fuzzy model can not be applied to nonlinear systems subject to parameter uncertainties. In fact, Most of the practical applications are subject to parameters uncertainties....
This paper addresses the problem of robust fault-tolerant control design scheme for a class of Takagi-Sugeno fuzzy systems subject to interval time-varying delay and external disturbances. First, by using improved delay partitioning approach, a novel n-steps iterative learning fault estimation observer under H ∞ constraint is constructed to achieve estimation of actuator fault. Then, based on the online estimation information, a fuzzy dynamic output feedback fault-tolerant controller considered...
The paper addresses the problem of design of a robust controller for a class of nonlinear uncertain systems to guarantee the prescribed decay rate of exponential stability. The bounded deterministic uncertainties are considered both in a studied system and its input part. The proposed approach does not employ matching conditions.
In this work we deal with the design of the robust feedback control of
wastewater treatment
system, namely the activated sludge process. This problem is formulated by a
nonlinear
ordinary differential system. On one hand, we develop a robust analysis when the
specific growth
function of the bacterium μ is not well known. On the other hand, when also
the substrate concentration
in the feed stream sin is unknown, we provide an observer of system and
propose a design
of robust feedback control in...
The rotary inverted pendulum (RIP) system is one of the fundamental, nonlinear, unstable and interesting benchmark systems in the field of control theory. In this paper, two nonlinear control strategies, namely hierarchical sliding mode control (HSMC) and decoupled sliding mode control (DSMC), are discussed to address the stabilization problem of the RIP system. We introduced HSMC with state-dependent switching gain for stabilization of the RIP system. Numerical simulations are performed to analyze...
In this paper, a robust fault-tolerant control strategy for constrained multisensor linear systems, subject to sensor faults and in the presence of bounded state and output disturbances, is proposed. The scheme verifies that, for each sensors-estimator combination, suitable residual variables lie inside pre-computed sets and selects a more appropriate combination based on a chosen criterion. An active fault tolerant output feedback controller yields an MPC-based control law and, by means of the...
In the paper the problem of practical stability of linear positive discrete-time systems of fractional order is addressed. New simple necessary and sufficient conditions for practical stability and for practical stability independent of the length of practical implementation are established. It is shown that practical stability of the system is equivalent to asymptotic stability of the corresponding standard positive discrete-time systems of the same order. The discussion is illustrated with numerical...
This paper presents sufficient conditions for the sliding mode control of a system with disturbance input. The behaviour of the sliding dynamics in the presence of unmatched uncertainty is also studied. When a certain sufficient condition on the gain feedback matrix of the discontinuous controller and the disturbance bound holds, then the disturbance does not affect the sliding system. The design of asymptotically stable sliding observers for linear multivariable systems is presented. A sliding...
The matrix pencil completion problem introduced in [J. J. Loiseau, S. Mondié, I. Zaballa, and P. Zagalak: Assigning the Kronecker invariants to a matrix pencil by row or column completions. Linear Algebra Appl. 278 (1998)] is reconsidered and the latest results achieved in that field are discussed.
This paper presents coordination algorithms for groups of mobile agents performing deployment and coverage tasks. As an important modeling constraint, we assume that each mobile agent has a limited sensing or communication radius. Based on the geometry of Voronoi partitions and proximity graphs, we analyze a class of aggregate objective functions and propose coverage algorithms in continuous and discrete time. These algorithms have convergence guarantees and are spatially distributed with respect...
This paper presents coordination algorithms for groups of
mobile agents performing deployment and coverage tasks. As an
important modeling constraint, we assume that each mobile agent has
a limited sensing or communication radius.
Based on the geometry of Voronoi partitions and proximity graphs, we
analyze a class of aggregate objective functions and propose coverage
algorithms in continuous and discrete time.
These algorithms have convergence guarantees and are spatially
distributed with...
Soient et deux champs de vecteurs lisses sur globalement asymptotiquement stables à l’origine. Nous donnons des conditions nécessaires et des conditions suffisantes sur la topologie de l’ensemble des points où et sont parallèles pour pouvoir assurer la stabilité asymptotique globale du système contrôlé non linéaire non autonomeoù le contrôle est une fonction mesurable arbitraire de dans . Les conditions données ne nécessitent aucune intégration ou construction d’une fonction de Lyapunov...
This paper is devoted to studying the globally exponential stability of impulsive high-order Hopfield-type neural networks with time-varying delays. In the process of impulsive effect, nonlinear and delayed factors are simultaneously considered. A new impulsive differential inequality is derived based on the Lyapunov-Razumikhin method and some novel stability criteria are then given. These conditions, ensuring the global exponential stability, are simpler and less conservative than some of the previous...
Currently displaying 101 –
120 of
148