Displaying 101 – 120 of 147

Showing per page

Robust dynamic output feedback fault-tolerant control for Takagi-Sugeno fuzzy systems with interval time-varying delay via improved delay partitioning approach

Chao Sun, Fuli Wang, Xiqin He (2016)

Open Mathematics

This paper addresses the problem of robust fault-tolerant control design scheme for a class of Takagi-Sugeno fuzzy systems subject to interval time-varying delay and external disturbances. First, by using improved delay partitioning approach, a novel n-steps iterative learning fault estimation observer under H ∞ constraint is constructed to achieve estimation of actuator fault. Then, based on the online estimation information, a fuzzy dynamic output feedback fault-tolerant controller considered...

Robust exponential stability of a class of nonlinear systems

Vojtech Veselý, Danica Rosinová (1998)

Kybernetika

The paper addresses the problem of design of a robust controller for a class of nonlinear uncertain systems to guarantee the prescribed decay rate of exponential stability. The bounded deterministic uncertainties are considered both in a studied system and its input part. The proposed approach does not employ matching conditions.

Robust Feedback Control Design for a Nonlinear Wastewater Treatment Model

M. Serhani, N. Raissi, P. Cartigny (2009)

Mathematical Modelling of Natural Phenomena

In this work we deal with the design of the robust feedback control of wastewater treatment system, namely the activated sludge process. This problem is formulated by a nonlinear ordinary differential system. On one hand, we develop a robust analysis when the specific growth function of the bacterium μ is not well known. On the other hand, when also the substrate concentration in the feed stream sin is unknown, we provide an observer of system and propose a design of robust feedback control in...

Robust hierarchical sliding mode control with state-dependent switching gain for stabilization of rotary inverted pendulum

Muhammad Idrees, Shah Muhammad, Saif Ullah (2019)

Kybernetika

The rotary inverted pendulum (RIP) system is one of the fundamental, nonlinear, unstable and interesting benchmark systems in the field of control theory. In this paper, two nonlinear control strategies, namely hierarchical sliding mode control (HSMC) and decoupled sliding mode control (DSMC), are discussed to address the stabilization problem of the RIP system. We introduced HSMC with state-dependent switching gain for stabilization of the RIP system. Numerical simulations are performed to analyze...

Robust multisensor fault tolerant model-following MPC design for constrained systems

Alain Yetendje, Maria M. Seron, José A. De Doná (2012)

International Journal of Applied Mathematics and Computer Science

In this paper, a robust fault-tolerant control strategy for constrained multisensor linear systems, subject to sensor faults and in the presence of bounded state and output disturbances, is proposed. The scheme verifies that, for each sensors-estimator combination, suitable residual variables lie inside pre-computed sets and selects a more appropriate combination based on a chosen criterion. An active fault tolerant output feedback controller yields an MPC-based control law and, by means of the...

Simple conditions for practical stability of positive fractional discrete-time linear systems

Mikołaj Busłowicz, Tadeusz Kaczorek (2009)

International Journal of Applied Mathematics and Computer Science

In the paper the problem of practical stability of linear positive discrete-time systems of fractional order is addressed. New simple necessary and sufficient conditions for practical stability and for practical stability independent of the length of practical implementation are established. It is shown that practical stability of the system is equivalent to asymptotic stability of the corresponding standard positive discrete-time systems of the same order. The discussion is illustrated with numerical...

Sliding mode controller-observer design for multivariable linear systems with unmatched uncertainty

A. Jafari Koshkouei, Alan S. I. Zinober (2000)

Kybernetika

This paper presents sufficient conditions for the sliding mode control of a system with disturbance input. The behaviour of the sliding dynamics in the presence of unmatched uncertainty is also studied. When a certain sufficient condition on the gain feedback matrix of the discontinuous controller and the disturbance bound holds, then the disturbance does not affect the sliding system. The design of asymptotically stable sliding observers for linear multivariable systems is presented. A sliding...

Some remarks on matrix pencil completion problems

Jean-Jacques Loiseau, Petr Zagalak, Sabine Mondié (2004)

Kybernetika

The matrix pencil completion problem introduced in [J. J. Loiseau, S. Mondié, I. Zaballa, and P. Zagalak: Assigning the Kronecker invariants to a matrix pencil by row or column completions. Linear Algebra Appl. 278 (1998)] is reconsidered and the latest results achieved in that field are discussed.

Spatially-distributed coverage optimization and control with limited-range interactions

Jorge Cortés, Sonia Martínez, Francesco Bullo (2005)

ESAIM: Control, Optimisation and Calculus of Variations

This paper presents coordination algorithms for groups of mobile agents performing deployment and coverage tasks. As an important modeling constraint, we assume that each mobile agent has a limited sensing or communication radius. Based on the geometry of Voronoi partitions and proximity graphs, we analyze a class of aggregate objective functions and propose coverage algorithms in continuous and discrete time. These algorithms have convergence guarantees and are spatially distributed with respect...

Spatially-distributed coverage optimization and control with limited-range interactions

Jorge Cortés, Sonia Martínez, Francesco Bullo (2010)

ESAIM: Control, Optimisation and Calculus of Variations

This paper presents coordination algorithms for groups of mobile agents performing deployment and coverage tasks. As an important modeling constraint, we assume that each mobile agent has a limited sensing or communication radius.
Based on the geometry of Voronoi partitions and proximity graphs, we analyze a class of aggregate objective functions and propose coverage algorithms in continuous and discrete time.
These algorithms have convergence guarantees and are spatially distributed with...

Stabilité des systèmes à commutations du plan

Ugo Boscain, Grégoire Charlot, Mario Sigalotti (2009/2010)

Séminaire de théorie spectrale et géométrie

Soient X et Y deux champs de vecteurs lisses sur 2 globalement asymptotiquement stables à l’origine. Nous donnons des conditions nécessaires et des conditions suffisantes sur la topologie de l’ensemble des points où X et Y sont parallèles pour pouvoir assurer la stabilité asymptotique globale du système contrôlé non linéaire non autonome q ˙ ( t ) = u ( t ) X ( q ( t ) ) + ( 1 - u ( t ) ) Y ( q ( t ) ) où le contrôle u est une fonction mesurable arbitraire de [ 0 , + [ dans { 0 , 1 } . Les conditions données ne nécessitent aucune intégration ou construction d’une fonction de Lyapunov...

Stability analysis of high-order Hopfield-type neural networks based on a new impulsive differential inequality

Yang Liu, Rongjiang Yang, Jianquan Lu, Bo Wu, Xiushan Cai (2013)

International Journal of Applied Mathematics and Computer Science

This paper is devoted to studying the globally exponential stability of impulsive high-order Hopfield-type neural networks with time-varying delays. In the process of impulsive effect, nonlinear and delayed factors are simultaneously considered. A new impulsive differential inequality is derived based on the Lyapunov-Razumikhin method and some novel stability criteria are then given. These conditions, ensuring the global exponential stability, are simpler and less conservative than some of the previous...

Currently displaying 101 – 120 of 147