Some functionals on sets of stationary codes
Shannon-Vizing-type problems concerning the upper bound for a distance chromatic index of multigraphs G in terms of the maximum degree Δ(G) are studied. Conjectures generalizing those related to the strong chromatic index are presented. The chromatic d-index and chromatic d-number of paths, cycles, trees and some hypercubes are determined. Among hypercubes, however, the exact order of their growth is found.
* The author is supported by a Return Fellowship from the Alexander von Humboldt Foundation.MDS [8,4,5] codes over a field with 64 elements are constructed. All such codes which are self-dual under a Hermitian type inner product are classified. The connection between these codes and a putative binary self- dual [72,36,16] code is considered.
In this study, we introduce new methods for constructing t-norms and t-conorms on a bounded lattice based on a priori given t-norm acting on and t-conorm acting on for an arbitrary element . We provide an illustrative example to show that our construction methods differ from the known approaches and investigate the relationship between them. Furthermore, these methods are generalized by iteration to an ordinal sum construction for t-norms and t-conorms on a bounded lattice.
This paper investigates the output controllability problem of temporal Boolean networks with inputs (control nodes) and outputs (controlled nodes). A temporal Boolean network is a logical dynamic system describing cellular networks with time delays. Using semi-tensor product of matrices, the temporal Boolean networks can be converted into discrete time linear dynamic systems. Some necessary and sufficient conditions on the output controllability via two kinds of inputs are obtained by providing...
* Supported by COMBSTRU Research Training Network HPRN-CT-2002-00278 and the Bulgarian National Science Foundation under Grant MM-1304/03.Additive code C over GF(4) of length n is an additive subgroup of GF(4)n. It is well known [4] that the problem of finding stabilizer quantum error-correcting codes is transformed into problem of finding additive self-orthogonal codes over the Galois field GF(4) under a trace inner product. Our purpose is to construct good additive self-dual codes of length 13...