Signs in weight spectral sequences, monodromy-weight conjectures, log Hodge symmetry and degenerations of surfaces

Yukiyoshi Nakkajima

Rendiconti del Seminario Matematico della Università di Padova (2006)

  • Volume: 116, page 71-185
  • ISSN: 0041-8994

How to cite

top

Nakkajima, Yukiyoshi. "Signs in weight spectral sequences, monodromy-weight conjectures, log Hodge symmetry and degenerations of surfaces." Rendiconti del Seminario Matematico della Università di Padova 116 (2006): 71-185. <http://eudml.org/doc/108703>.

@article{Nakkajima2006,
author = {Nakkajima, Yukiyoshi},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
language = {eng},
pages = {71-185},
publisher = {Seminario Matematico of the University of Padua},
title = {Signs in weight spectral sequences, monodromy-weight conjectures, log Hodge symmetry and degenerations of surfaces},
url = {http://eudml.org/doc/108703},
volume = {116},
year = {2006},
}

TY - JOUR
AU - Nakkajima, Yukiyoshi
TI - Signs in weight spectral sequences, monodromy-weight conjectures, log Hodge symmetry and degenerations of surfaces
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2006
PB - Seminario Matematico of the University of Padua
VL - 116
SP - 71
EP - 185
LA - eng
UR - http://eudml.org/doc/108703
ER -

References

top
  1. [A] M. ARTIN, Algebraic approximation of structures over complete local rings. IHES Publ. Math., 36 (1969), pp. 23-58. Zbl0181.48802MR268188
  2. [B] P. BERTHELOT, Cohomologie cristalline des schémas de caractéristique p &gt; 0. Lecture Notes in Math. 407, Springer-Verlag, BerlinNew York (1974). Zbl0298.14012MR384804
  3. [BBM] P. BERTHELOT - L. BREEN - W. MESSING, Théorie de Dieudonné cristalline. II. Lecture Notes in Math. 930, Springer-Verlag (1982). Zbl0516.14015MR667344
  4. [BGR] S. BOSCH - U. GÜNTZER - R. REMMERT, Non-archimedean analysis. Grundlehren der Mathematischen Wissenschaften 261, SpringerVerlag (1984). Zbl0539.14017MR746961
  5. [BL] S. BOSCH - W. LÜTKEBOHMERT, Formal and rigid geometry. I. Rigid spaces. Math. Ann. 295 (1993), pp. 291-317. Zbl0808.14017MR1202394
  6. [BO1] P. BERTHELOT - A. OGUS, Notes on crystalline cohomology. Princeton University Press, University of Tokyo Press (1978). Zbl0383.14010MR491705
  7. [BO2] P. BERTHELOT - A. OGUS, F-isocrystals and de Rham cohomology. I. Invent. Math. 72 (1983), pp. 159-199. Zbl0516.14017MR700767
  8. [Ch] B. CHIARELLOTTO. Rigid cohomology and invariant cycles for a semistable log scheme. Duke Math. J. 97 (1999), pp. 155-169. Zbl0985.14009MR1682272
  9. [Cl] C. H. CLEMENS, Degeneration of Kähler manifolds. Duke Math. J. 44 (1977), pp. 215-290. Zbl0353.14005MR444662
  10. [Co] B. CONRAD, Grothendieck duality and base change. Lecture Notes in Math. 1750, Springer-Verlag (2000). Zbl0992.14001MR1804902
  11. [CI] R. COLEMAN- A. IOVITA, The Frobenius and monodromy operators for curves and abelian varieties. Duke Math. J. 97 (1999), pp. 171-215. Zbl0962.14030MR1682268
  12. [CL] B. CHIARELLOTTO - B. LE STUM, Sur la pureté de la cohomologie cristalline. C. R. Acad. Sci. Paris, Série I, 326 (1998), pp. 961-963. Zbl0936.14016MR1649945
  13. [D1] P. DELIGNE, Théorème de Lefschetz et critères de dégénérescence de suites spectrales. IHES Publ. Math. 35 (1968), pp. 107-126. Zbl0159.22501MR244265
  14. [D2] P. DELIGNE, Théorie de Hodge, II. IHES Publ. Math. 40 (1971), pp. 5-57. Zbl0219.14007MR498551
  15. [D3] P. DELIGNE, Théorie de Hodge, III. IHES Publ. Math. 44 (1974), pp. 5-77. Zbl0237.14003MR498552
  16. [D4] P. DELIGNE, La conjecture de Weil, II. IHES Publ. Math. 52 (1980), pp. 137-252. Zbl0456.14014MR601520
  17. [dJ] A. J. DE JONG, Smoothness, semi-stability and alterations. IHES Publ. Math. 83 (1996), pp. 51-93. Zbl0916.14005MR1423020
  18. [DI1] P. DELIGNE - L. ILLUSIE, Classes de Chern cristalline et intersections. Appendice de Relèvement des surfaces K3 en caractéristique nulle. In: Surfaces algébriques, Séminaire de Géométrie algébrique d'Orsay 1976-1978. Lecture Notes in Math. 868, Springer-Verlag (1981), pp. 58-79. Zbl0495.14024MR638598
  19. [DI2] P. DELIGNE - L. ILLUSIE, Relèvements modulo p2 et décompositon du complexe de de Rham. Invent. Math. 89 (1987), pp. 247-270. Zbl0632.14017MR894379
  20. [DR] P. DELIGNE - M. RAPOPORT, Les schémas de modules de courbes elliptiques. In: Modular functions of one variables II, Lecture Notes in Math. 349, Springer-Verlag (1973), pp. 143-316. Zbl0281.14010MR337993
  21. [E] F. EL ZEIN, Théorie de Hodge des cycles évanescents. Ann. Scient. Éc. Norm. Sup. 4e série 19 (1986), pp. 107-184. Zbl0538.14003MR860812
  22. [EGA III-2] A. GROTHENDIECK - J. DIEUDONNÉ, Éléments de géométrie algébrique. III-2. IHES Publ. Math. 17 (1963). Zbl0122.16102MR163911
  23. [Fa] G. FALTINGS, F-isocrystals on open varieties: results and conjectures. The Grothendieck Festschrift II, Progr. Math. 87, Birkhäuser (1990), pp. 219-248. Zbl0736.14004MR1106900
  24. [Fo1] J.-M. FONTAINE, Modules galoisiens, modules filtrés et anneaux de Barsotti-Tate. In: Journées de géométrie de algébrique de Rennes III, Astérisque 65 (1979), pp. 3-80. Zbl0429.14016MR563472
  25. [Fo2] J.-M. FONTAINE, Représentations p-adiques semi-stables. In: Périodes p-adiques, Astérsique 223 (1994), pp. 113-184. Zbl0865.14009MR1293972
  26. [Fr] R. FRIEDMAN, Global smoothings of varieties with normal crossings. Ann. of Math. 118 (1983), pp. 75-114. Zbl0569.14002MR707162
  27. [Fu1] K. FUJIWARA, Etale topology and philosophy of log. The report of algebraic geometry symposium at Kinosaki (1990), pp. 116-123 (in Japanese). 
  28. [Fu2] K. FUJIWARA, A proof of the absolute purity conjecture (after Gabber). Advanced Studies in Pure Math. 36 (2002), Azumino, pp. 153-183. Zbl1059.14026MR1971516
  29. [FK] K. FUJIWARA - K. KATO, Logarithmic etale topology theory. Preprint. 
  30. [FN] T. FUJISAWA - C. NAKAYAMA, Mixed Hodge structures on log deformations. Rend. Sem. Mat. Univ. Padova 110 (2003), pp. 221-268. Zbl1167.14301MR2033010
  31. [Gra] H. GRAUERT, Ein Theorem der analytischen Garbentheorie und die Modulräume komplexer Strukturen. IHES Publ. Math. 5 (1960), pp. 233-292. Zbl0100.08001MR121814
  32. [Gro] M. GROS, Classes de Chern et classes de cycles en cohomologie de Hodge-Witt logarithmique. Mém. Soc. Math. France (N.S.) 21 (1985), p. 87. Zbl0615.14011MR844488
  33. [GH] P. GRIFFITHS - J. HARRIS, Principles of algebraic geometry. John Wiley Sonc, Inc. (1978). Zbl0408.14001MR507725
  34. [GN] F. GUILLÉN - V. NAVARRO AZNAR, Sur le théorème local des cycles invariants. Duke Math. J. 61 (1990), pp. 133-155. Zbl0722.14002MR1068383
  35. [Ha1] R. HARTSHORNE, Residues and duality. Lecture Notes in Math. 20, Springer-Verlag (1966). Zbl0212.26101MR222093
  36. [Ha2] R. HARTSHORNEAlgebraic geometry. Graduate Texts in Math. 52, Springer-Verlag (1977). Zbl0367.14001MR463157
  37. [Hy] O. HYODO, On the de Rham-Witt complex attached to a semi-stable family. Comp. Math. 78 (1991), pp. 241-260. Zbl0742.14015MR1106296
  38. [HK] O. HYODO - K. KATO, Semi-stable reduction and crystalline cohomology with logarithmic poles. Périodes p-adiques (Bures-sur-Yvette, 1988). Astérisque 223 (1994), pp. 221-268. Zbl0852.14004MR1293974
  39. [IKN] L. ILLUSIE - K. KATO - C. NAKAYAMA, Quasi-unipotent logarithmic Riemann-Hilbert correspondences. J. Math. Sci. Univ. Tokyo 12 (2005), pp. 1-66. Zbl1082.14024MR2126784
  40. [Il1] L. ILLUSIE, Complexe de de Rham-Witt et cohomologie cristalline. Ann. Scient. Éc. Norm. Sup. 4e série 12 (1979), pp. 501-661. Zbl0436.14007MR565469
  41. [Il2] L. ILLUSIE, Autour du théorème de monodromie locale Périodes p-adiques (Bures-sur-Yvette, 1988). Astérisque 223 (1994), pp. 9-57. Zbl0837.14013MR1293970
  42. [Il3] L. ILLUSIE, Logarithmic spacse (according to K. Kato). In: Barsotti symposium in algebraic geometry, V. Cristante and W. Messing (eds), Perspective in Math., Academic Press (1994), pp. 183-203. Zbl0832.14015MR1307397
  43. [Il4] L. ILLUSIE, An overview of the work of K. Fujiwara, K. Kato, and C. Nakayama on logarithmic étale cohomology. In: Cohomologies p-adiques et applications arithmétiques (II), Astérisque 279 (2002), pp. 271-322. Zbl1052.14005MR1922832
  44. [It1] T. ITO, Weight-monodromy conjecture for p-adically uniformized varieties. Invent. Math. 159 (2005), pp. 607-656. Zbl1154.14014MR2125735
  45. [It2] T. ITO, Weight-monodromy conjecture over equal characteristic local fields. Amer. J. Math. 127 (2005), pp. 647-658. Zbl1082.14021MR2141647
  46. [Ka] T. KAJIWARA, The monodromy-weight conjecture and the hard Lefschetz theorem for H1 of projective log semistable varieties. Preprint. 
  47. [Kf] F. KATO, Log smooth deformation theory. T^ohoku Math. J. 48 (1996), pp. 317-354. Zbl0876.14007MR1404507
  48. [Kk1] K. KATO, Logarithmic structures of Fontaine-Illusie. In: Algebraic analysis, geometry, and number theory, Johns Hopkins Univ. Press (1989), pp. 191-224. Zbl0776.14004MR1463703
  49. [Kk2] K. KATO, Logarithmic degeneration and Dieudonné theory. Preprint. 
  50. [Kk3] K. KATO, A letter to Y. Nakkajima (in Japanese) (1997). 
  51. [Kü] K. KÜNNEMANN, Projective regular models for abelian varieties, semistable reduction, and the height paring. Duke Math. J. 95 (1998), pp. 161-212. Zbl0955.14017MR1646554
  52. [Kz] N. KATZ, Slope filtration of F-crystals. Astérisque 63, Soc. Math. de France (1979), pp. 113-163. Zbl0426.14007MR563463
  53. [KN] K. KATO - C. NAKAYAMA, Log Betti cohomology, log étale cohomology, and log de Rham cohomology of log schemes over C. Kodai Math. J. 22 (1999), pp. 161-186. Zbl0957.14015MR1700591
  54. [KS] M. KASHIWARA - P. SCHAPIRA, Sheaves on manifolds. Grundlehren der Mathematischen Wissenschaften 292, Springer-Verlag, Berlin (1994). Zbl0709.18001MR1299726
  55. [KwN] Y. KAWAMATA - Y. NAMIKAWA, Logarithmic deformations of normal crossing varieties and smoothing of degenerate Calabi-Yau varieties. Invent. Math. 118 (1994), pp. 395-409. Zbl0848.14004MR1296351
  56. [Mi] J. S. MILNE, Étale cohomology. Princeton University Press (1980). Zbl0433.14012MR559531
  57. [Mo] A. MOKRANE, La suite spectrale des poids en cohomologie de HyodoKato. Duke Math. J. 72 (1993), pp. 301-337. Zbl0834.14010MR1248675
  58. [Nak1] C. NAKAYAMA, Logarithmic étale cohomology. Math. Ann. 308 (1997), pp. 365-404. Zbl0877.14016MR1457738
  59. [Nak2] C. NAKAYAMA, Nearby cycles for log smooth families. Compositio Math. 112 (1998), pp. 45-75. Zbl0926.14006MR1622751
  60. [Nak3] C. NAKAYAMA, Degeneration of l-adic weight spectral sequences. Amer. J. Math. 122 (2000), pp. 721-733. Zbl1033.14012MR1771570
  61. [Nak4] C. NAKAYAMA, A projection formula for log smooth varieties in log étale cohomology. Preprint. Zbl1145.14019MR2369063
  62. [Nakk1] Y. NAKKAJIMA, Liftings of log K3 surfaces and classical log Enriques surfaces in mixed characteristics. J. of Algebraic Geometry 9 (2000), pp. 355-393. Zbl0972.14029MR1735777
  63. [Nakk2] Y. NAKKAJIMA, Monodromies and weight filtrations, and the types of simple normal crossing log surfaces with torsion canonical sheaves. Preprint. 
  64. [Nakk3] Y. NAKKAJIMA, p-adic weight spectral sequences of log varieties. To appear in J. Math. Sci. Univ. Tokyo. Zbl1108.14015MR2206357
  65. [Nakk4] Y. NAKKAJIMA, Weight filtrations on log crystalline cohomologies of families of open simple normal crossing log varieties in characteristic p &gt; 0. In preparation. 
  66. [Ny] N. O. NYGAARD, Closedness of regular 1-forms of algebraic surfaces. Ann. Scient. Éc. Norm. Sup. 4e serie 12 (1979), pp. 33-45. Zbl0428.14008MR532375
  67. [NS] Y. NAKKAJIMA - A. SHIHO, Weight filtrations on log crystalline cohomologies of families of open smooth varieties in characteristic p &gt; 0. Preprint. Zbl1187.14002MR2450600
  68. [O] A. OGUS, A. F-crystals on schemes with constant log structure. Compositio Math. 97 (1995), pp. 187-225. Zbl0849.14008MR1355125
  69. [R1] M. RAYNAUD, Géométrie analytique rigide d'après Tate, Kiehl,... Table ronde d'analyse non archimedienne. Bull. Soc. Math. France, Mémoire 39/40 (1974), pp. 319-327. Zbl0299.14003MR470254
  70. [R2] M. RAYNAUD, 1-motifs et monodromie géométrique. In: Périodes p-adiques, Seminaire de Bures, 1988. Astérisque 223, Soc. Math. de France (1994), pp. 295-319. Zbl0830.14001MR1293976
  71. [RZ] M. RAPOPORT - T. ZINK, Über die lokale Zetafunktion von Shimuravarietäten, Monodromiefiltration und verschwindende Zyklen in ungleicher Charakteristik. Invent. Math. 68 (1982), pp. 21-101. Zbl0498.14010MR666636
  72. [SaM] M. SAITO, Modules de Hodge polarisables. Publ. Res. Inst. Math. Sci. 24 (1988), pp. 849-995. Zbl0691.14007MR1000123
  73. [SaT] T. SAITO, Weight spectral sequences and independence of l. J. of the Inst. of Math. Jussieu. 2 (2003), pp. 1-52. Zbl1084.14027MR2006800
  74. [SGA 1] A. GROTHENDIECK - M. MME RAYNAUD, Revêtements étales et groupe fondamental. Lecture Notes in Math. 224, Springer-Verlag (1971). [SGA 41 2] P. DELIGNE, Cohomologie étale. Lecture Notes in Math. 569. Springer-Verlag (1977). MR354651
  75. [SGA 4-3] A. GROTHENDIECK - ET AL., Théorie des topos et cohomologie étale des schémas. Lecture Notes in Math. Vol. 305. Springer-Verlag (1973). MR354654
  76. [SGA 7-I] A. GROTHENDIECK, Groupes de monodromie en géométrie algébrique. Lecture Notes Math. 288 (1972), Springer-Verlag. MR354656
  77. [St1] J. H. M. STEENBRINK, Limits of Hodge structures. Invent. Math. 31 (1976), pp. 229-257. Zbl0303.14002MR429885
  78. [St2] J. H. M. STEENBRINK, Logarithmic embeddings of varieties with normal crossings and mixed Hodge structures. Math. Ann. 301 (1995), pp. 105-118. Zbl0814.14010MR1312571
  79. [ST] J.-P. SERRE - J. TATE, Good reduction of abelian varieties. Ann. of Math. 88 (1968), pp. 492-517. Zbl0172.46101MR236190
  80. [SZ] J. H. M. STEENBRINK - S. ZUCKER, Variation of mixed Hodge structure. I. Invent. Math. 80 (1985), pp. 489-542. Zbl0626.14007MR791673
  81. [Ta] J. TATE, Rigid analytic spaces. Invent. Math. 12 (1971), pp. 257-289. Zbl0212.25601MR306196
  82. [Ts1] T. TSUJI, p-adic étale cohomology and crystalline cohomology in the semi-stable reduction case. Invent. Math. 137 (1999), pp. 233-411. Zbl0945.14008MR1705837
  83. [Ts2] T, TSUJI, Poincaré duality for logarithmic crystalline cohomology. Compositio Math. 118 (1999), pp. 11-41. Zbl0964.14020MR1705975
  84. [Ue] K. UENO, Compact rigid analytic spaces with special regard to surfaces. Algebraic geometry, Advanced Studies in Pure Math. 10 (1987), Sendai 1985, 765-794. Zbl0649.14012MR946257
  85. [Us] S. USUI, Recovery of vanishing cycles by log geometry. Tohoku Math. J. 53 (2001), pp. 1-36. Zbl1015.14005MR1808639
  86. [V] M. VAN DER PUT, Serre duality for rigid analytic spaces. Indag. Math. (N.S.) 3 (1992), pp. 219-235. Zbl0762.32016MR1168350
  87. [Z] S. ZUCKER, Variation of mixed Hodge structure. II. Invent. Math. 80 (1985), pp. 543-565. Zbl0615.14003MR791674

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.