Sur la compatibilité à Frobenius de l’isomorphisme de dualité relative

Daniel Caro

Rendiconti del Seminario Matematico della Università di Padova (2009)

  • Volume: 122, page 235-286
  • ISSN: 0041-8994

How to cite

top

Caro, Daniel. "Sur la compatibilité à Frobenius de l’isomorphisme de dualité relative." Rendiconti del Seminario Matematico della Università di Padova 122 (2009): 235-286. <http://eudml.org/doc/108773>.

@article{Caro2009,
author = {Caro, Daniel},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
language = {fre},
pages = {235-286},
publisher = {Seminario Matematico of the University of Padua},
title = {Sur la compatibilité à Frobenius de l’isomorphisme de dualité relative},
url = {http://eudml.org/doc/108773},
volume = {122},
year = {2009},
}

TY - JOUR
AU - Caro, Daniel
TI - Sur la compatibilité à Frobenius de l’isomorphisme de dualité relative
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2009
PB - Seminario Matematico of the University of Padua
VL - 122
SP - 235
EP - 286
LA - fre
UR - http://eudml.org/doc/108773
ER -

References

top
  1. [Ber96a] P. BERTHELOT, Cohérence différentielle des algèbres de fonctions surconvergentes, C. R. Acad. Sci. Paris Sér. I Math., 323, no. 1 (1996), pp. 35-40. Zbl0871.14014MR1401625
  2. [Ber96b] P. BERTHELOT, D-modules arithmétiques. I. Opérateurs différentiels de niveau fini, Ann. Sci. École Norm. Sup. (4), 29, no. 2 (1996), pp. 185-272. Zbl0886.14004MR1373933
  3. [Ber00] P. BERTHELOT, D-modules arithmétiques. II. Descente par Frobenius, Mém. Soc. Math. Fr. (N.S.), no. 81 (2000), pp. vi+136. Zbl0948.14017MR1775613
  4. [Ber02] P. BERTHELOT, Introduction à la théorie arithmétique des D-modules, Astérisque, no. 279 (2002), pp. 1-80, Cohomologies p-adiques et applications arithmétiques, II. Zbl1098.14010MR1922828
  5. [Car04a] D. CARO, Cohérence différentielle des F-isocristaux unités, C. R. Math. Acad. Sci. Paris, 338, no. 2 (2004), pp. 145-150. Zbl1047.14009MR2038284
  6. [Car04b] D. CARO, D-modules arithmétiques surcohérents. Application aux fonctions L, Ann. Inst. Fourier, Grenoble, 54, no. 6 (2004), pp. 1943-1996. Zbl1129.14030MR2134230
  7. [Car05a] D. CARO, Comparaison des foncteurs duaux des isocristaux surconvergents, Rend. Sem. Mat. Univ. Padova, 114 (2005), pp. 131-211. Zbl1165.14305MR2207865
  8. [Car06a] D. CARO, Dévissages des F-complexes de D-modules arithmétiques en F-isocristaux surconvergents, Invent. Math., 166, no. 2 (2006), pp. 397-456. Zbl1114.14011MR2249804
  9. [Car06b] D. CARO, Fonctions L associées aux D-modules arithmétiques. Cas des courbes, Compositio Mathematica, 142, no. 01 (2006), pp. 169-206. Zbl1167.14012MR2197408
  10. [Car07] D. CARO, Overconvergent F-isocrystals and differential overcoherence, Invent. Math., 170, no. 3 (2007), pp. 507-539. Zbl1203.14025MR2357501
  11. [Car09] D. CARO, D-modules arithmétiques associés aux isocristaux surconvergents. Cas lisse, Bulletin de la SMF 137, fascicul 4 (2009), pp. 453-543. Zbl1300.14021MR2572180
  12. [dJ96] A. J. DE JONG, Smoothness, semi-stability and alterations, Inst. Hautes Études Sci. Publ. Math., no. 83 (1996), pp. 51-93. Zbl0916.14005MR1423020
  13. [Gro60] A. GROTHENDIECK, Éléments de géométrie algébrique. I. Le langage des schémas, Inst. Hautes Études Sci. Publ. Math., no. 4 (1960), p. 228. Zbl0118.36206MR217083
  14. [Har66] R. HARTSHORNE, Residues and duality (Springer-Verlag, Berlin, 1966). MR222093
  15. [Kedb] K. S. KEDLAYA, Semistable reduction for overconvergent F-isocrystals, IV: Local semistable reduction at nonmonomial valuations, http:// aps.arxiv.org/format/0712.3400. Zbl1230.14023
  16. [Ked04] K. S. KEDLAYA, Full faithfulness for overconvergent F-isocrystals, Geometric aspects of Dwork theory. Vol. I, II, Walter de Gruyter GmbH 835. Zbl1087.14018MR2099088
  17. [Ked07] K. S. KEDLAYA, Semistable reduction for overconvergent F-isocrystals. I. Unipotence and logarithmic extensions, Compos. Math., 143, no. 5 (2007), pp. 1164-1212. Zbl1144.14012MR2360314
  18. [Ked08] K. S. KEDLAYA, Semistable reduction for overconvergent F-isocrystals. II. A valuation-theoretic approach, Compos. Math., 144, no. 3 (2008), pp. 657-672. Zbl1153.14015MR2422343
  19. [Ked09] K. S. KEDLAYA, Semistable reduction for overconvergent F-isocrystals, III: Local semistable reduction at monomial valuations, Compos. Math., 145, no. 1 (2009), pp. 143-172. Zbl1184.14031MR2480498
  20. [Tsu02] N. TSUZUKI, Morphisms of F-isocrystals and the finite monodromy theorem for unit-root F-isocrystals, Duke Math. J., 111, no. 3 (2002), pp. 385-418. Zbl1055.14022MR1885826
  21. [Vir00] A. VIRRION, Dualité locale et holonomie pour les D-modules arithmétiques, Bull. Soc. Math. France, 128, no. 1 (2000), pp. 1-68. Zbl0955.14015MR1765829
  22. [Vir04] A. VIRRION, Trace et dualité relative pour les D-modules arithmétiques, Geometric aspects of Dwork theory. Vol. I, II, Walter de Gruyter GmbH & Co. KG (Berlin, 2004), pp. 1039-1112. Zbl1083.14017MR2099095

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.