Adapting meshes and time-steps for phase change problems

Ricardo H. Nochetto; Alfred Schmidt; Claudio Verdi

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (1997)

  • Volume: 8, Issue: 4, page 273-292
  • ISSN: 1120-6330

Abstract

top
We address the numerical approximation of the two-phase Stefan problem and discuss an adaptive finite element method based on rigorous a posteriori error estimation and refinement/coarsening. We also investigate how to restrict coarsening for the resulting method to be stable and convergent. We review implementation issues associated with bisection and conclude with simulations of a persistent corner singularity, for which adaptivity is an essential tool.

How to cite

top

Nochetto, Ricardo H., Schmidt, Alfred, and Verdi, Claudio. "Adapting meshes and time-steps for phase change problems." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 8.4 (1997): 273-292. <http://eudml.org/doc/244087>.

@article{Nochetto1997,
abstract = {We address the numerical approximation of the two-phase Stefan problem and discuss an adaptive finite element method based on rigorous a posteriori error estimation and refinement/coarsening. We also investigate how to restrict coarsening for the resulting method to be stable and convergent. We review implementation issues associated with bisection and conclude with simulations of a persistent corner singularity, for which adaptivity is an essential tool.},
author = {Nochetto, Ricardo H., Schmidt, Alfred, Verdi, Claudio},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Degenerate parabolic equations; Stefan problem; Finite elements; A posteriori estimates; Adaptivity; degenerate parabolic equations; phase change problems; mesh refinement; stability; convergence; two-phase Stefan problem; adaptive finite element method; a posteriori error estimation},
language = {eng},
month = {12},
number = {4},
pages = {273-292},
publisher = {Accademia Nazionale dei Lincei},
title = {Adapting meshes and time-steps for phase change problems},
url = {http://eudml.org/doc/244087},
volume = {8},
year = {1997},
}

TY - JOUR
AU - Nochetto, Ricardo H.
AU - Schmidt, Alfred
AU - Verdi, Claudio
TI - Adapting meshes and time-steps for phase change problems
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1997/12//
PB - Accademia Nazionale dei Lincei
VL - 8
IS - 4
SP - 273
EP - 292
AB - We address the numerical approximation of the two-phase Stefan problem and discuss an adaptive finite element method based on rigorous a posteriori error estimation and refinement/coarsening. We also investigate how to restrict coarsening for the resulting method to be stable and convergent. We review implementation issues associated with bisection and conclude with simulations of a persistent corner singularity, for which adaptivity is an essential tool.
LA - eng
KW - Degenerate parabolic equations; Stefan problem; Finite elements; A posteriori estimates; Adaptivity; degenerate parabolic equations; phase change problems; mesh refinement; stability; convergence; two-phase Stefan problem; adaptive finite element method; a posteriori error estimation
UR - http://eudml.org/doc/244087
ER -

References

top
  1. ATHANASOPOULOS, I. - CAFFARELLI, L. - SALSA, S., Degenerate phase transition problems of parabolic type. Smoothness of the front. To appear. MR1831629DOI10.1515/crll.2001.033
  2. BÄNSCH, E., Local mesh refinement in 2 and 3 dimensions. IMPACT Comput. Sci. Engrg., 3, 1991, 181-191. Zbl0744.65074MR1141298DOI10.1016/0899-8248(91)90006-G
  3. CIARLET, PH. G., The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam1978. Zbl0511.65078MR520174
  4. CLÉMENT, PH., Approximation by finite element functions using local regularization. RAIRO Modél. Math. Anal. Numér., 9, 1975, 77-84. Zbl0368.65008MR400739
  5. DUPONT, T., Mesh modification for evolution equations. Math. Comp., 29, 1982, 85-107. Zbl0493.65044MR658215DOI10.2307/2007621
  6. ELLIOTT, C. M., Error analysis of the enthalpy method for the Stefan problem. IMA J. Numer. Anal, 7, 1987, 61-71. Zbl0638.65088MR967835DOI10.1093/imanum/7.1.61
  7. ERIKSSON, K. - JOHNSON, C., Adaptive finite element methods for parabolic problems. I: A linear model problem. SIAM J. Numer. Anal., 28, 1991, 43-77. Zbl0732.65093MR1083324DOI10.1137/0728003
  8. JEROME, J. W. - ROSE, M. E., Error estimates for the multidimensional two-phase Stefan problem. Math. Comp., 39, 1982, 377-414. Zbl0505.65060MR669635DOI10.2307/2007320
  9. JIANG, X. - NOCHETTO, R. H., Optimal error estimates for semidiscrete phase relaxation models. RAIRO Modél. Math. Anal. Numér., 31, 1997, 91-120. Zbl0874.65069MR1432853
  10. JIANG, X. - NOCHETTO, R. H., A finite element method for a phase relaxation model. Part I: Quasi-uniform mesh. SIAM J. Numer. Anal., to appear. Zbl0972.65067MR1619875DOI10.1137/S0036142996297783
  11. JIANG, X. - NOCHETTO, R. H. - VERDI, C., A P 1 - P 1 finite element method for a phase relaxation model. Part II: Adaptively refined meshes. SIAM J. Numer. Anal., to appear. Zbl0934.65105MR1688994DOI10.1137/S0036142997317596
  12. KORNHUBER, R., Adaptive Monotone Multigrid Methods for Nonlinear Variational Problems. Teubner, Stuttgart1997. Zbl0879.65041MR1469497
  13. KOSSACZKÝ, I., A recursive approach to local mesh refinement in two and three dimensions. J. Comput. Appl. Math., 55, 1994, 275-288. Zbl0823.65119MR1329875DOI10.1016/0377-0427(94)90034-5
  14. LADYZENSKAJA, O. A. - SOLONNIKOV, V. - URAL'CEVA, N., Linear and Quasilinear Equations of Parabolic Type. TMM 23, AMS, Providence1968. Zbl0174.15403MR241822
  15. MAGENES, E. - NOCHETTO, R. H. - VERDI, C., Energy error estimates for a linear scheme to approximate nonlinear parabolic problems. RAIRO Modél. Math. Anal. Numér., 21, 1987, 655-678. Zbl0635.65123MR921832
  16. MAUBACH, J. M., Local bisection refinement for n-simplicial grids generated by reflection. SIAM J. Sci. Statist. Comput., 16, 1995, 210-227. Zbl0816.65090MR1311687DOI10.1137/0916014
  17. MITCHELL, W., A comparison of adaptive refinement techniques for elliptic problems. ACM Trans. Math. Softw., 15, 1989, 326-347. Zbl0900.65306MR1062496DOI10.1145/76909.76912
  18. NOCHETTO, R. H., Error estimates for multidimensional singular parabolic problems. Japan J. Indust. Appl. Math., 4, 1987, 111-138. Zbl0657.65132MR899207DOI10.1007/BF03167758
  19. NOCHETTO, R. H., Finite element methods for parabolic free boundary problems. In: W. LIGHT (ed.), Advances in Numerical Analysis, Nonlinear Partial Differential Equations and Dynamical Systems. Oxford University Press, vol. I, Oxford1991, 34-88. Zbl0733.65089MR1138471
  20. NOCHETTO, R. H. - PAOLINI, M. - VERDI, C., An adaptive finite elements method for two-phase Stefan problems in two space dimensions. Part I: Stability and error estimates. Supplement. Math. Comp., 57, 1991, 73-108, S1-S11. Zbl0733.65087MR1079028DOI10.2307/2938664
  21. NOCHETTO, R. H. - PAOLINI, M. - VERDI, C., An adaptive finite elements method for two-phase Stefan problems in two space dimensions. Part II: Implementation and numerical experiments. SIAM J. Sci. Statist. Comput., 12, 1991, 1207-1244. Zbl0733.65088MR1114983DOI10.1137/0912065
  22. NOCHETTO, R. H. - PAOLINI, M. - VERDI, C., A fully discrete adaptive nonlinear Chernoff formula. SIAM J. Numer. Anal., 30, 1993, 991-1014. Zbl0805.65135MR1231324DOI10.1137/0730052
  23. NOCHETTO, R. H. - SCHMIDT, A. - VERDI, C., A posteriori error estimation and adaptivity for degenerate parabolic problems. Math. Comp., to appear. Zbl0942.65111MR1648399DOI10.1090/S0025-5718-99-01097-2
  24. NOCHETTO, H. - SCHMIDT, A. - VERDI, C., Mesh and time step modification for degenerate parabolic problems. In preparation. 
  25. NOCHETTO, R. H. - SCHMIDT, A. - VERDI, C., Adaptive algorithm and simulations for Stefan problems in two and three dimensions. In preparation. 
  26. NOCHETTO, R. H. - VERDI, C., Approximation of degenerate parabolic problems using numerical integration. SIAM J. Numer. Anal., 25, 1988, 784-814. Zbl0655.65131MR954786DOI10.1137/0725046
  27. NOCHETTO, R. H. - VERDI, C., An efficient linear scheme to approximate parabolic free boundary problems: error estimates and implementation. Math. Comp., 51, 1988, 27-53. Zbl0657.65131MR942142DOI10.2307/2008578
  28. RULLA, J., Error analysis for implicit approximations to solutions to Chauchy problems. SIAM J. Numer. Anal., 33, 1996, 68-87. Zbl0855.65102MR1377244DOI10.1137/0733005
  29. RULLA, J. - WALKINGTON, N. J., Optimat rates of convergence for degenerate parabolic problems in two dimensions. SIAM J. Numer. Anal., 33, 1996, 56-57. Zbl0856.65102MR1377243DOI10.1137/0733004
  30. VERDI, C., Numerical aspects of parabolic free boundary and hysteresis problems. in: A. VISINTIN (ed.), Phase Transition and Hysteresis. Lectures Notes in Mathematics, 1584, Springer-Verlag, Berlin1994, 213-284. Zbl0819.35155MR1321834DOI10.1007/BFb0073398
  31. VERDI, C. - VISINTIN, A., Error estimates for a semiexplicit numerical scheme for Stefan-type problems. Numer. Math., 52, 1988, 165-185. Zbl0617.65125MR923709DOI10.1007/BF01398688
  32. VISINTIN, A., Models of Phase Transitions. Birkhäuser, Boston1996. Zbl0882.35004MR1423808DOI10.1007/978-1-4612-4078-5

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.