A priori and a posteriori error bounds for a nonconforming linear finite element approximation of a non-newtonian flow
- Volume: 32, Issue: 7, page 843-858
- ISSN: 0764-583X
Access Full Article
topHow to cite
topBao, Weizhu, and Barrett, John W.. "A priori and a posteriori error bounds for a nonconforming linear finite element approximation of a non-newtonian flow." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 32.7 (1998): 843-858. <http://eudml.org/doc/193901>.
@article{Bao1998,
author = {Bao, Weizhu, Barrett, John W.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {local evaluation of residuals; Carreau-type law; pseudo-plastic fluid},
language = {eng},
number = {7},
pages = {843-858},
publisher = {Dunod},
title = {A priori and a posteriori error bounds for a nonconforming linear finite element approximation of a non-newtonian flow},
url = {http://eudml.org/doc/193901},
volume = {32},
year = {1998},
}
TY - JOUR
AU - Bao, Weizhu
AU - Barrett, John W.
TI - A priori and a posteriori error bounds for a nonconforming linear finite element approximation of a non-newtonian flow
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1998
PB - Dunod
VL - 32
IS - 7
SP - 843
EP - 858
LA - eng
KW - local evaluation of residuals; Carreau-type law; pseudo-plastic fluid
UR - http://eudml.org/doc/193901
ER -
References
top- [1] J. BARANGER and H. El AMRI, Estimateurs a posteriori d'erreur pour le calcul adaptatif d'écoulements quasi-Newtoniens, RAIRO M2AN 25, 31-48 (1991). Zbl0712.76068MR1086839
- [2] J. BARANGER and H. El AMRI, A posteriori error estimators for mixed finite element approximation of some quasi-Newtonian flows, Mat. Aplic. Comp. 10, 89-102 (1991). Zbl0770.76034MR1172087
- [3] J. BARANGER and K. NAJIB, Analyse numérique des écoulements quasi-Newtoniens dont la viscosité obéit à la loi puissance ou la loi de Carreau. Numer. Math. 58, 35-49 (1990). Zbl0702.76007MR1069652
- [4] J. W. BARRETT and W. B. LIU, Finite element error analysis of a quasi-Newtonian flow obeying the Carreau or power law, Numer. Math. 64, 433-453 (1993). Zbl0796.76049MR1213411
- [5] J. W. BARRETT and W. B. LIU, Quasi-norm error bounds for the finite element approximation of a non-Newtonian flow, Numer. Math. 68, 437-456 (1994). Zbl0811.76036MR1301740
- [6] P. G. CIARLET, The Finite Element Method for Elliptic Problems, North-Holland (1978). Zbl0383.65058MR520174
- [7] P. CLÉMENT, Approximation by finite element functions using local regularization, RAIRO Anal. Numér. 9, 77-84 (1975). Zbl0368.65008MR400739
- [8] M. CROUZEIX and P.-A. RAVIART, Conforming and nonconforming finite element methods for solving the stationary Stokes equations, RAIRO Anal. Numér. 3, 33-75 (1973). Zbl0302.65087MR343661
- [9] E. DARI, R. DURÁN and C. PADRA, Error estimators for nonconforming finite element approximations of the Stokes problem, Math. Comp. 64, 1017-1033 (1995). Zbl0827.76042MR1284666
- [10] Q. DU and M. D. GUNZBURGER, Finite-element approximations of a Ladyzhenskaya model for stationary incompressible viscous flow, SIAM J. Numer. Anal. 27, 1-19 (1990). Zbl0697.76046MR1034917
- [11] R. S. FALK and M. E. MORLEY, Equivalence of finite element methods for problems in elasticity, SIAM J. Numer. Anal. 27, 1486-1505 (1990). Zbl0722.73068MR1080333
- [12] D. M. FALL, Régularité de l'écoulement stationnaire d'un fluide non newtonien, C. R. Acad. Sci. Paris 311, 531-534 (1990). Zbl0717.35016MR1078116
- [13] V. GIRAULT and P.-A. RAVIART, Finite Element Methods for Navier-Stokes Equations, Springer (1986). Zbl0585.65077MR851383
- [14] R. KOUHIA and R. STENBERG, A linear nonconforming finite element method for nearly incompressible elasticity and Stokes flow, Comput. Methods Appl. Mech. Engrg. 124, 195-212 (1995). Zbl1067.74578MR1343077
- [15] P. P. MOSOLOV and V. P. MJASNIKOV, A proof of Korn's inequality, Soviet Math. Dokl. 12, 1618-1622 (1971). Zbl0248.52011
- [16] D. SANDRI, Sur l'approximation numérique des écoulements quasi-Newtoniens dont la viscosité suit la loi puissance ou la loi de Carreau, RAIRO M2AN 27, 131-155 (1993). Zbl0764.76039MR1211613
- [17] R. VERFÜRTH, A posteriori error estimates for nonlinear problems. Finite element discretizations of elliptic equations, Math. Comp. 62, 445-475 (1994). Zbl0799.65112MR1213837
- [18] R. VERFÜRTH, A posteriori error estimators for the Stokes equations II non-conforming discretizations, Numer. Math. 60, 235-249 (1991). Zbl0739.76035MR1133581
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.