A priori and a posteriori error bounds for a nonconforming linear finite element approximation of a non-newtonian flow

Weizhu Bao; John W. Barrett

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1998)

  • Volume: 32, Issue: 7, page 843-858
  • ISSN: 0764-583X

How to cite

top

Bao, Weizhu, and Barrett, John W.. "A priori and a posteriori error bounds for a nonconforming linear finite element approximation of a non-newtonian flow." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 32.7 (1998): 843-858. <http://eudml.org/doc/193901>.

@article{Bao1998,
author = {Bao, Weizhu, Barrett, John W.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {local evaluation of residuals; Carreau-type law; pseudo-plastic fluid},
language = {eng},
number = {7},
pages = {843-858},
publisher = {Dunod},
title = {A priori and a posteriori error bounds for a nonconforming linear finite element approximation of a non-newtonian flow},
url = {http://eudml.org/doc/193901},
volume = {32},
year = {1998},
}

TY - JOUR
AU - Bao, Weizhu
AU - Barrett, John W.
TI - A priori and a posteriori error bounds for a nonconforming linear finite element approximation of a non-newtonian flow
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1998
PB - Dunod
VL - 32
IS - 7
SP - 843
EP - 858
LA - eng
KW - local evaluation of residuals; Carreau-type law; pseudo-plastic fluid
UR - http://eudml.org/doc/193901
ER -

References

top
  1. [1] J. BARANGER and H. El AMRI, Estimateurs a posteriori d'erreur pour le calcul adaptatif d'écoulements quasi-Newtoniens, RAIRO M2AN 25, 31-48 (1991). Zbl0712.76068MR1086839
  2. [2] J. BARANGER and H. El AMRI, A posteriori error estimators for mixed finite element approximation of some quasi-Newtonian flows, Mat. Aplic. Comp. 10, 89-102 (1991). Zbl0770.76034MR1172087
  3. [3] J. BARANGER and K. NAJIB, Analyse numérique des écoulements quasi-Newtoniens dont la viscosité obéit à la loi puissance ou la loi de Carreau. Numer. Math. 58, 35-49 (1990). Zbl0702.76007MR1069652
  4. [4] J. W. BARRETT and W. B. LIU, Finite element error analysis of a quasi-Newtonian flow obeying the Carreau or power law, Numer. Math. 64, 433-453 (1993). Zbl0796.76049MR1213411
  5. [5] J. W. BARRETT and W. B. LIU, Quasi-norm error bounds for the finite element approximation of a non-Newtonian flow, Numer. Math. 68, 437-456 (1994). Zbl0811.76036MR1301740
  6. [6] P. G. CIARLET, The Finite Element Method for Elliptic Problems, North-Holland (1978). Zbl0383.65058MR520174
  7. [7] P. CLÉMENT, Approximation by finite element functions using local regularization, RAIRO Anal. Numér. 9, 77-84 (1975). Zbl0368.65008MR400739
  8. [8] M. CROUZEIX and P.-A. RAVIART, Conforming and nonconforming finite element methods for solving the stationary Stokes equations, RAIRO Anal. Numér. 3, 33-75 (1973). Zbl0302.65087MR343661
  9. [9] E. DARI, R. DURÁN and C. PADRA, Error estimators for nonconforming finite element approximations of the Stokes problem, Math. Comp. 64, 1017-1033 (1995). Zbl0827.76042MR1284666
  10. [10] Q. DU and M. D. GUNZBURGER, Finite-element approximations of a Ladyzhenskaya model for stationary incompressible viscous flow, SIAM J. Numer. Anal. 27, 1-19 (1990). Zbl0697.76046MR1034917
  11. [11] R. S. FALK and M. E. MORLEY, Equivalence of finite element methods for problems in elasticity, SIAM J. Numer. Anal. 27, 1486-1505 (1990). Zbl0722.73068MR1080333
  12. [12] D. M. FALL, Régularité de l'écoulement stationnaire d'un fluide non newtonien, C. R. Acad. Sci. Paris 311, 531-534 (1990). Zbl0717.35016MR1078116
  13. [13] V. GIRAULT and P.-A. RAVIART, Finite Element Methods for Navier-Stokes Equations, Springer (1986). Zbl0585.65077MR851383
  14. [14] R. KOUHIA and R. STENBERG, A linear nonconforming finite element method for nearly incompressible elasticity and Stokes flow, Comput. Methods Appl. Mech. Engrg. 124, 195-212 (1995). Zbl1067.74578MR1343077
  15. [15] P. P. MOSOLOV and V. P. MJASNIKOV, A proof of Korn's inequality, Soviet Math. Dokl. 12, 1618-1622 (1971). Zbl0248.52011
  16. [16] D. SANDRI, Sur l'approximation numérique des écoulements quasi-Newtoniens dont la viscosité suit la loi puissance ou la loi de Carreau, RAIRO M2AN 27, 131-155 (1993). Zbl0764.76039MR1211613
  17. [17] R. VERFÜRTH, A posteriori error estimates for nonlinear problems. Finite element discretizations of elliptic equations, Math. Comp. 62, 445-475 (1994). Zbl0799.65112MR1213837
  18. [18] R. VERFÜRTH, A posteriori error estimators for the Stokes equations II non-conforming discretizations, Numer. Math. 60, 235-249 (1991). Zbl0739.76035MR1133581

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.