Displaying similar documents to “Structure of central torsion Iwasawa modules”

Relative tilting modules with respect to a semidualizing module

Maryam Salimi (2019)

Czechoslovak Mathematical Journal

Similarity:

Let R be a commutative Noetherian ring, and let C be a semidualizing R -module. The notion of C -tilting R -modules is introduced as the relative setting of the notion of tilting R -modules with respect to C . Some properties of tilting and C -tilting modules and the relations between them are mentioned. It is shown that every finitely generated C -tilting R -module is C -projective. Finally, we investigate some kernel subcategories related to C -tilting modules.

On the structure theory of the Iwasawa algebra of a p-adic Lie group

Otmar Venjakob (2002)

Journal of the European Mathematical Society

Similarity:

This paper is motivated by the question whether there is a nice structure theory of finitely generated modules over the Iwasawa algebra, i.e. the completed group algebra, Λ of a p -adic analytic group G . For G without any p -torsion element we prove that Λ is an Auslander regular ring. This result enables us to give a good definition of the notion of a pseudo-null Λ -module. This is classical when G = p k for some integer k 1 , but was previously unknown in the non-commutative case. Then the category...

Coherence relative to a weak torsion class

Zhanmin Zhu (2018)

Czechoslovak Mathematical Journal

Similarity:

Let R be a ring. A subclass 𝒯 of left R -modules is called a weak torsion class if it is closed under homomorphic images and extensions. Let 𝒯 be a weak torsion class of left R -modules and n a positive integer. Then a left R -module M is called 𝒯 -finitely generated if there exists a finitely generated submodule N such that M / N 𝒯 ; a left R -module A is called ( 𝒯 , n ) -presented if there exists an exact sequence of left R -modules 0 K n - 1 F n - 1 F 1 F 0 M 0 such that F 0 , , F n - 1 are finitely generated free and K n - 1 is 𝒯 -finitely generated;...

A note on generalizations of semisimple modules

Engin Kaynar, Burcu N. Türkmen, Ergül Türkmen (2019)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

A left module M over an arbitrary ring is called an ℛ𝒟 -module (or an ℛ𝒮 -module) if every submodule N of M with Rad ( M ) N is a direct summand of (a supplement in, respectively) M . In this paper, we investigate the various properties of ℛ𝒟 -modules and ℛ𝒮 -modules. We prove that M is an ℛ𝒟 -module if and only if M = Rad ( M ) X , where X is semisimple. We show that a finitely generated ℛ𝒮 -module is semisimple. This gives us the characterization of semisimple rings in terms of ℛ𝒮 -modules. We completely determine the structure...

α -modules and generalized submodules

Rafiquddin Rafiquddin, Ayazul Hasan, Mohammad Fareed Ahmad (2019)

Communications in Mathematics

Similarity:

A QTAG-module M is an α -module, where α is a limit ordinal, if M / H β ( M ) is totally projective for every ordinal β < α . In the present paper α -modules are studied with the help of α -pure submodules, α -basic submodules, and α -large submodules. It is found that an α -closed α -module is an α -injective. For any ordinal ω α ω 1 we prove that an α -large submodule L of an ω 1 -module M is summable if and only if M is summable.

On τ -extending modules

Y. Talebi, R. Mohammadi (2016)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In this paper we introduce the concept of τ -extending modules by τ -rational submodules and study some properties of such modules. It is shown that the set of all τ -rational left ideals of R R is a Gabriel filter. An R -module M is called τ -extending if every submodule of M is τ -rational in a direct summand of M . It is proved that M is τ -extending if and only if M = R e j M E ( R / τ ( R ) ) N , such that N is a τ -extending submodule of M . An example is given to show that the direct sum of τ -extending modules need not...

Recollements induced by good (co)silting dg-modules

Rongmin Zhu, Jiaqun Wei (2023)

Czechoslovak Mathematical Journal

Similarity:

Let U be a dg- A -module, B the endomorphism dg-algebra of U . We know that if U is a good silting object, then there exist a dg-algebra C and a recollement among the derived categories 𝐃 ( C , d ) of C , 𝐃 ( B , d ) of B and 𝐃 ( A , d ) of A . We investigate the condition under which the induced dg-algebra C is weak nonpositive. In order to deal with both silting and cosilting dg-modules consistently, the notion of weak silting dg-modules is introduced. Thus, similar results for good cosilting dg-modules are obtained....

Some results on ( n , d ) -injective modules, ( n , d ) -flat modules and n -coherent rings

Zhanmin Zhu (2015)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let n , d be two non-negative integers. A left R -module M is called ( n , d ) -injective, if Ext d + 1 ( N , M ) = 0 for every n -presented left R -module N . A right R -module V is called ( n , d ) -flat, if Tor d + 1 ( V , N ) = 0 for every n -presented left R -module N . A left R -module M is called weakly n - F P -injective, if Ext n ( N , M ) = 0 for every ( n + 1 ) -presented left R -module N . A right R -module V is called weakly n -flat, if Tor n ( V , N ) = 0 for every ( n + 1 ) -presented left R -module N . In this paper, we give some characterizations and properties of ( n , d ) -injective modules and ( n , d ) -flat modules in...

Stratified modules over an extension algebra

Erzsébet Lukács, András Magyar (2018)

Czechoslovak Mathematical Journal

Similarity:

Let A be a standard Koszul standardly stratified algebra and X an A -module. The paper investigates conditions which imply that the module Ext A * ( X ) over the Yoneda extension algebra A * is filtered by standard modules. In particular, we prove that the Yoneda extension algebra of A is also standardly stratified. This is a generalization of similar results on quasi-hereditary and on graded standardly stratified algebras.

-invariants and Darmon cycles attached to modular forms

Victor Rotger, Marco Adamo Seveso (2012)

Journal of the European Mathematical Society

Similarity:

Let f be a modular eigenform of even weight k 2 and new at a prime p dividing exactly the level with respect to an indefinite quaternion algebra. The theory of Fontaine-Mazur allows to attach to f a monodromy module D f F M and an -invariant f F M . The first goal of this paper is building a suitable p -adic integration theory that allows us to construct a new monodromy module D f and -invariant f , in the spirit of Darmon. The two monodromy modules are isomorphic, and in particular the two -invariants...

Local cohomology, cofiniteness and homological functors of modules

Kamal Bahmanpour (2022)

Czechoslovak Mathematical Journal

Similarity:

Let I be an ideal of a commutative Noetherian ring R . It is shown that the R -modules H I j ( M ) are I -cofinite for all finitely generated R -modules M and all j 0 if and only if the R -modules Ext R i ( N , H I j ( M ) ) and Tor i R ( N , H I j ( M ) ) are I -cofinite for all finitely generated R -modules M , N and all integers i , j 0 .

On the minimaxness and coatomicness of local cohomology modules

Marzieh Hatamkhani, Hajar Roshan-Shekalgourabi (2022)

Czechoslovak Mathematical Journal

Similarity:

Let R be a commutative Noetherian ring, I an ideal of R and M an R -module. We wish to investigate the relation between vanishing, finiteness, Artinianness, minimaxness and 𝒞 -minimaxness of local cohomology modules. We show that if M is a minimax R -module, then the local-global principle is valid for minimaxness of local cohomology modules. This implies that if n is a nonnegative integer such that ( H I i ( M ) ) 𝔪 is a minimax R 𝔪 -module for all 𝔪 Max ( R ) and for all i < n , then the set Ass R ( H I n ( M ) ) is finite. Also, if H I i ( M ) is...

A note on Frobenius divided modules in mixed characteristics

Pierre Berthelot (2012)

Bulletin de la Société Mathématique de France

Similarity:

If X is a smooth scheme over a perfect field of characteristic p , and if 𝒟 X ( ) is the sheaf of differential operators on X [7], it is well known that giving an action of 𝒟 X ( ) on an 𝒪 X -module is equivalent to giving an infinite sequence of 𝒪 X -modules descending via the iterates of the Frobenius endomorphism of X [5]. We show that this result can be generalized to any infinitesimal deformation f : X S of a smooth morphism in characteristic p , endowed with Frobenius liftings. We also show that it...