Integral points on curves
Publications Mathématiques de l'IHÉS (1960)
- Volume: 6, page 27-43
- ISSN: 0073-8301
Access Full Article
topHow to cite
topLang, Serge. "Integral points on curves." Publications Mathématiques de l'IHÉS 6 (1960): 27-43. <http://eudml.org/doc/103820>.
@article{Lang1960,
author = {Lang, Serge},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {algebraic geometry},
language = {eng},
pages = {27-43},
publisher = {Institut des Hautes Études Scientifiques},
title = {Integral points on curves},
url = {http://eudml.org/doc/103820},
volume = {6},
year = {1960},
}
TY - JOUR
AU - Lang, Serge
TI - Integral points on curves
JO - Publications Mathématiques de l'IHÉS
PY - 1960
PB - Institut des Hautes Études Scientifiques
VL - 6
SP - 27
EP - 43
LA - eng
KW - algebraic geometry
UR - http://eudml.org/doc/103820
ER -
References
top- [1] E. ARTIN and G. WHAPLES, Axiomatic characterization of fields by the product formula, Bull. Am. Math. Soc., vol. 51, n° 7 (1945), pp. 469-492. Zbl0060.08302MR7,111f
- [2] C. CHABAUTY, Sur les équations diophantiennes liées aux unités d'un corps de nombres algébriques fini, thèse, Annali di Math., 17 (1938), pp. 127-168. Zbl0019.00303JFM64.0142.01
- [3] C. CHABAUTY, Sur les points rationnels des variétés algébriques dont l'irrégularité est supérieure à la dimension, Comptes rendus Académie des Sciences, Paris, 212 (1941), pp. 1022-1024. Zbl0025.24903MR6,102eJFM67.0105.02
- [4] S. LANG, Introduction to algebraic geometry, Interscience, New York, 1959. Zbl0095.15301
- [5] S. LANG, Abelian varieties, Interscience, New York, 1959. Zbl0098.13201MR21 #4959
- [6] S. LANG, Unramified class field theory over function fields in several variables, Annals of Math., vol. 64, n° 2 (1956), pp. 285-325. Zbl0089.26201MR18,672b
- [7] S. LANG and A. NÉRON, Rational points of abelian varieties in function fields, Am. J. of Math., vol. 81, n° 1 (1959), pp. 95-118. Zbl0099.16103MR21 #1311
- [8] K. MAHLER, Über die rationalen Punkte auf Kurven vom Geschlecht Eins, J. Reine angew. Math., Bd. 170 (1934), pp. 168-178. Zbl0008.20002JFM60.0159.03
- [9] T. MATSUSAKA, On algebraic families of positive divisors..., J. Math. Soc. Japan, vol. 5, n° 2 (1953), pp. 118-136. Zbl0051.37901MR15,465b
- [10] L. J. MORDELL, On the rational solutions of the indeterminate equation of the third and fourth degrees, Proc. of the Cambridge Philos. Soc., 21 (1922). Zbl48.0140.03JFM48.1156.03
- [11] A. NÉRON, Problèmes arithmétiques et géométriques rattachés à la notion de rang d'une courbe algébrique dans un corps, Bull. Soc. Math. France, 80 (1952), pp. 101-166. Zbl0049.30803MR15,151a
- [12] D. RIDOUT, The p-adic generalization of the Thue-Siegel-Roth theorem, Mathematika, 5 (1958), pp. 40-48. Zbl0085.03501MR20 #3851
- [13] K. F. ROTH, Rational approximations to algebraic numbers, Mathematika, 2 (1955), pp. 1-20. Zbl0064.28501MR17,242d
- [14] C. L. SIEGEL, Über einige Anwendungen Diophantischer Approximationen, Abh. Preussischen Akademie der Wissenschaften, Phys. Math. Klasse (1929), pp. 41-69. JFM56.0180.05
- [15] A. WEIL, Arithmetic on algebraic varieties, Annals of Math., vol. 53, n° 3 (1951), pp. 412-444. Zbl0043.27002MR13,66d
- [16] A. WEIL, L'arithmétique sur les courbes algébriques, Acta Mathematica, 52 (1928), pp. 281-315. JFM55.0713.01
Citations in EuDML Documents
top- François Bruhat, Points entiers sur les courbes de genre
- Alain Robert, Retour au théorème de Siegel-Mahler-Roth
- Daniel Bertrand, Fonctions abéliennes -adiques. Définitions et conjectures
- Armin Leutbecher, Euclidean fields having a large Lenstra constant
- J. H. Sampson, Some properties and applications of harmonic mappings
- Dragos Ghioca, Thomas Tucker, Michael E. Zieve, The Mordell–Lang question for endomorphisms of semiabelian varieties
- G. R. Everest, A “Hardy-Littlewood” approach to the -unit equation
- M. L. Brown, The tame fundamental group of an abelian variety and integral points
- Jan-Hendrik Evertse, On sums of -units and linear recurrences
- P. Erdös, C. L. Steward, R. Tijdeman, Some diophantine equations with many solutions
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.