Carleman estimates for the Laplace-Beltrami equation on complex manifolds

Aldo Andreotti; Edoardo Vesentini

Publications Mathématiques de l'IHÉS (1965)

  • Volume: 25, page 81-130
  • ISSN: 0073-8301

How to cite

top

Andreotti, Aldo, and Vesentini, Edoardo. "Carleman estimates for the Laplace-Beltrami equation on complex manifolds." Publications Mathématiques de l'IHÉS 25 (1965): 81-130. <http://eudml.org/doc/103855>.

@article{Andreotti1965,
author = {Andreotti, Aldo, Vesentini, Edoardo},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {complex functions},
language = {eng},
pages = {81-130},
publisher = {Institut des Hautes Études Scientifiques},
title = {Carleman estimates for the Laplace-Beltrami equation on complex manifolds},
url = {http://eudml.org/doc/103855},
volume = {25},
year = {1965},
}

TY - JOUR
AU - Andreotti, Aldo
AU - Vesentini, Edoardo
TI - Carleman estimates for the Laplace-Beltrami equation on complex manifolds
JO - Publications Mathématiques de l'IHÉS
PY - 1965
PB - Institut des Hautes Études Scientifiques
VL - 25
SP - 81
EP - 130
LA - eng
KW - complex functions
UR - http://eudml.org/doc/103855
ER -

References

top
  1. [1] A. ANDREOTTI, Coomologia sulle varietà complesse, II : Summer course on "Funzioni e varietà complesse" sponsored by C.I.M.E., Varenna (Italy), Summer 1963, Edizioni Cremonese, Roma. Zbl0178.42801
  2. [2] A. ANDREOTTI et H. GRAUERT, Théorèmes de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France, 90 (1962), 193-259. Zbl0106.05501MR27 #343
  3. [3] A. ANDREOTTI et E. VESENTINI, Sopra un teorema di Kodaira, Ann. Sc. Norm. Sup. Pisa (3) 15 (1961), 283-309. Zbl0108.16604MR25 #4551
  4. [4] A. ANDREOTTI et E. VESENTINI, Les théorèmes fondamentaux de la théorie des espaces holomorphiquement complets, Séminaire Ehresmann, 4 (1962-1963), 1-31, Paris, Secrétariat Mathématique. 
  5. [5] A. ANDREOTTI et E. VESENTINI, Disuguaglianze di Carleman sopra una varietà complessa, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8), 35 (1963), 431-434. Zbl0138.06603MR29 #6053
  6. [6] N. BOURBAKI, Espaces vectoriels topologiques, chap. I-IV, Hermann, Paris, 1953 et 1955. Zbl0050.10703
  7. [7] E. CALABI and E. VESENTINI, On compact, locally symmetric Kähler manifols, Ann. of Math., 71 (1960), 472-507. Zbl0100.36002MR22 #1922b
  8. [8] T. CARLEMAN, Sur un problème d'unicité pour les systèmes d'équations aux dérivées partielles à deux variables indépendantes, Ark. Mat. Astr. och Fys., 26 B (1939), n° 17, 1-9 = Édition complète des articles, Malmö, 1960 497-505. Zbl0022.34201MR1,55fJFM65.0394.03
  9. [9] J. DIEUDONNÉ et L. SCHWARTZ, La dualité dans les espaces (F) et (ℒF), Ann. Inst. Fourier, Grenoble, 1 (1950), 61-101. Zbl0035.35501MR12,417d
  10. [10] K. O. FRIEDRICHS, On the differentiability of the solutions of linear elliptic differential equations, Comm. Pure Applied Math., 6 (1953), 299-325. Zbl0051.32703MR15,430c
  11. [11] A. GROTHENDIECK, Espaces vectoriels topologiques, 2e éd., Publicação da Sociedade de Matemática de S. Paulo, São Paulo, 1958. Zbl0316.46001MR21 #5637
  12. [12] F. HIRZEBRUCH, Neue topologische Methoden in der algebraischen Geometrie, Berlin, Springer, 1956. Zbl0101.38301MR18,509b
  13. [13] L. HÖRMANDER, On the uniqueness of Cauchy problem, Math. Scand., 6 (1958), 213-225. Zbl0088.30201MR21 #3674
  14. [14] K. KODAIRA, On a differential geometric method in the theory of analytic stacks, Proc. Nat. Acad. Sci. U.S.A., 39 (1953), 1268-1273. Zbl0053.11701MR16,618b
  15. [15] G. KÖTHE, Topologische lineare Räume, I, Berlin, Springer, 1960. Zbl0093.11901
  16. [16] E. MAGENES e G. STAMPACCHIA, I problemi al contorno per le equazioni differenziali di tipo ellittico, Ann. Sc. Norm. Sup. Pisa (3), 12 (1958), 247-358. Zbl0082.09601MR23 #A1140
  17. [17] L. SCHWARTZ, Homomorphismes et applications complètement continues, C. R. Acad. Sci. Paris, 236 (1953), 2472-2473. Zbl0050.33301MR15,233b
  18. [18] J. SEBASTIÃO E SILVA, Su certe classi di spazi localmente convessi importanti per le applicazioni, Rend. Math. e Appl. (5) 14 (1955), 398-410. Zbl0064.35801
  19. [19] Séminaire H. CARTAN, 1953-1954, Paris, École Normale Supérieure ; Cambridge, Mass., Mathematics Department of M.I.T., 1955. 
  20. [20] J.-P. SERRE, Un théorème de dualité, Comment. Math. Helv., 29 (1955), 9-26. Zbl0067.16101MR16,736d
  21. [21] E. VESENTINI, Coomologia sulle varietà complesse, I : Summer course on "Funzioni e varietà complesse" sponsored by C.I.M.E., Varenna (Italy), Summer 1963, Edizioni Cremonese, Roma. Zbl0178.42704
  22. [22] A. WEIL, Introduction à l'étude des variétés kählériennes, Hermann, Paris, 1958. Zbl0137.41103
  23. [23] K. YANO and S. BOCHNER, Curvature and Betti numbers, Ann. of Math. Studies, n° 32, Princeton University Press, 1953. Zbl0051.39402MR15,989f
  24. [24] G. ZIN, Esistenza e rappresentazione di funzioni analitiche, le quali, su una curva di Jordan, si riducono a una funzione assegnata, Ann. di Mat. (4) 34 (1953), 365-405. Zbl0051.30902MR14,1073e

Citations in EuDML Documents

top
  1. Gérard Schiffmann, Un analogue du théorème de Borel-Weil-Bott dans le cas non compact
  2. M. Derridj, Inégalités de Carleman et applications au ¯
  3. Makhlouf Derridj, John Erik Fornaess, A result on extension of C.R. functions
  4. M. Derridj, Inégalités de Carleman et extension locale des fonctions holomorphes
  5. Mario Landucci, Solutions with "precise" compact support of the ¯ -Problem in strictly pseudoconvex domains and some consequences
  6. M. Derridj, Le problème de Cauchy pour ¯ -application
  7. M. Derridj, Le problème de Cauchy pour ¯ et application
  8. Giuliana Gigante, Fibrati vettoriali con curvatura semidefinita e annullamento della coomologia
  9. Ngaiming Mok, Yum-Tong Siu, Shing-Tung Yau, The Poincaré-Lelong equation on complete Kähler manifolds
  10. Mauro Nacinovich, On weighted estimated for some systems of partial differential operators

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.