Carleman estimates for the Laplace-Beltrami equation on complex manifolds
Aldo Andreotti; Edoardo Vesentini
Publications Mathématiques de l'IHÉS (1965)
- Volume: 25, page 81-130
- ISSN: 0073-8301
Access Full Article
topHow to cite
topAndreotti, Aldo, and Vesentini, Edoardo. "Carleman estimates for the Laplace-Beltrami equation on complex manifolds." Publications Mathématiques de l'IHÉS 25 (1965): 81-130. <http://eudml.org/doc/103855>.
@article{Andreotti1965,
author = {Andreotti, Aldo, Vesentini, Edoardo},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {complex functions},
language = {eng},
pages = {81-130},
publisher = {Institut des Hautes Études Scientifiques},
title = {Carleman estimates for the Laplace-Beltrami equation on complex manifolds},
url = {http://eudml.org/doc/103855},
volume = {25},
year = {1965},
}
TY - JOUR
AU - Andreotti, Aldo
AU - Vesentini, Edoardo
TI - Carleman estimates for the Laplace-Beltrami equation on complex manifolds
JO - Publications Mathématiques de l'IHÉS
PY - 1965
PB - Institut des Hautes Études Scientifiques
VL - 25
SP - 81
EP - 130
LA - eng
KW - complex functions
UR - http://eudml.org/doc/103855
ER -
References
top- [1] A. ANDREOTTI, Coomologia sulle varietà complesse, II : Summer course on "Funzioni e varietà complesse" sponsored by C.I.M.E., Varenna (Italy), Summer 1963, Edizioni Cremonese, Roma. Zbl0178.42801
- [2] A. ANDREOTTI et H. GRAUERT, Théorèmes de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France, 90 (1962), 193-259. Zbl0106.05501MR27 #343
- [3] A. ANDREOTTI et E. VESENTINI, Sopra un teorema di Kodaira, Ann. Sc. Norm. Sup. Pisa (3) 15 (1961), 283-309. Zbl0108.16604MR25 #4551
- [4] A. ANDREOTTI et E. VESENTINI, Les théorèmes fondamentaux de la théorie des espaces holomorphiquement complets, Séminaire Ehresmann, 4 (1962-1963), 1-31, Paris, Secrétariat Mathématique.
- [5] A. ANDREOTTI et E. VESENTINI, Disuguaglianze di Carleman sopra una varietà complessa, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8), 35 (1963), 431-434. Zbl0138.06603MR29 #6053
- [6] N. BOURBAKI, Espaces vectoriels topologiques, chap. I-IV, Hermann, Paris, 1953 et 1955. Zbl0050.10703
- [7] E. CALABI and E. VESENTINI, On compact, locally symmetric Kähler manifols, Ann. of Math., 71 (1960), 472-507. Zbl0100.36002MR22 #1922b
- [8] T. CARLEMAN, Sur un problème d'unicité pour les systèmes d'équations aux dérivées partielles à deux variables indépendantes, Ark. Mat. Astr. och Fys., 26 B (1939), n° 17, 1-9 = Édition complète des articles, Malmö, 1960 497-505. Zbl0022.34201MR1,55fJFM65.0394.03
- [9] J. DIEUDONNÉ et L. SCHWARTZ, La dualité dans les espaces (F) et (ℒF), Ann. Inst. Fourier, Grenoble, 1 (1950), 61-101. Zbl0035.35501MR12,417d
- [10] K. O. FRIEDRICHS, On the differentiability of the solutions of linear elliptic differential equations, Comm. Pure Applied Math., 6 (1953), 299-325. Zbl0051.32703MR15,430c
- [11] A. GROTHENDIECK, Espaces vectoriels topologiques, 2e éd., Publicação da Sociedade de Matemática de S. Paulo, São Paulo, 1958. Zbl0316.46001MR21 #5637
- [12] F. HIRZEBRUCH, Neue topologische Methoden in der algebraischen Geometrie, Berlin, Springer, 1956. Zbl0101.38301MR18,509b
- [13] L. HÖRMANDER, On the uniqueness of Cauchy problem, Math. Scand., 6 (1958), 213-225. Zbl0088.30201MR21 #3674
- [14] K. KODAIRA, On a differential geometric method in the theory of analytic stacks, Proc. Nat. Acad. Sci. U.S.A., 39 (1953), 1268-1273. Zbl0053.11701MR16,618b
- [15] G. KÖTHE, Topologische lineare Räume, I, Berlin, Springer, 1960. Zbl0093.11901
- [16] E. MAGENES e G. STAMPACCHIA, I problemi al contorno per le equazioni differenziali di tipo ellittico, Ann. Sc. Norm. Sup. Pisa (3), 12 (1958), 247-358. Zbl0082.09601MR23 #A1140
- [17] L. SCHWARTZ, Homomorphismes et applications complètement continues, C. R. Acad. Sci. Paris, 236 (1953), 2472-2473. Zbl0050.33301MR15,233b
- [18] J. SEBASTIÃO E SILVA, Su certe classi di spazi localmente convessi importanti per le applicazioni, Rend. Math. e Appl. (5) 14 (1955), 398-410. Zbl0064.35801
- [19] Séminaire H. CARTAN, 1953-1954, Paris, École Normale Supérieure ; Cambridge, Mass., Mathematics Department of M.I.T., 1955.
- [20] J.-P. SERRE, Un théorème de dualité, Comment. Math. Helv., 29 (1955), 9-26. Zbl0067.16101MR16,736d
- [21] E. VESENTINI, Coomologia sulle varietà complesse, I : Summer course on "Funzioni e varietà complesse" sponsored by C.I.M.E., Varenna (Italy), Summer 1963, Edizioni Cremonese, Roma. Zbl0178.42704
- [22] A. WEIL, Introduction à l'étude des variétés kählériennes, Hermann, Paris, 1958. Zbl0137.41103
- [23] K. YANO and S. BOCHNER, Curvature and Betti numbers, Ann. of Math. Studies, n° 32, Princeton University Press, 1953. Zbl0051.39402MR15,989f
- [24] G. ZIN, Esistenza e rappresentazione di funzioni analitiche, le quali, su una curva di Jordan, si riducono a una funzione assegnata, Ann. di Mat. (4) 34 (1953), 365-405. Zbl0051.30902MR14,1073e
Citations in EuDML Documents
top- Gérard Schiffmann, Un analogue du théorème de Borel-Weil-Bott dans le cas non compact
- M. Derridj, Inégalités de Carleman et applications au
- Makhlouf Derridj, John Erik Fornaess, A result on extension of C.R. functions
- M. Derridj, Inégalités de Carleman et extension locale des fonctions holomorphes
- Mario Landucci, Solutions with "precise" compact support of the -Problem in strictly pseudoconvex domains and some consequences
- M. Derridj, Le problème de Cauchy pour -application
- M. Derridj, Le problème de Cauchy pour et application
- Giuliana Gigante, Fibrati vettoriali con curvatura semidefinita e annullamento della coomologia
- Ngaiming Mok, Yum-Tong Siu, Shing-Tung Yau, The Poincaré-Lelong equation on complete Kähler manifolds
- Mauro Nacinovich, On weighted estimated for some systems of partial differential operators
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.