Invariant measures for the defocusing Nonlinear Schrödinger equation

Nikolay Tzvetkov[1]

  • [1] Université Lille I Département de Mathématiques 59 655 Villeneuve d’Ascq Cedex (France)

Annales de l’institut Fourier (2008)

  • Volume: 58, Issue: 7, page 2543-2604
  • ISSN: 0373-0956

Abstract

top
We prove the existence and the invariance of a Gibbs measure associated to the defocusing sub-quintic Nonlinear Schrödinger equations on the disc of the plane 2 . We also prove an estimate giving some intuition to what may happen in 3 dimensions.

How to cite

top

Tzvetkov, Nikolay. "Invariant measures for the defocusing Nonlinear Schrödinger equation." Annales de l’institut Fourier 58.7 (2008): 2543-2604. <http://eudml.org/doc/10386>.

@article{Tzvetkov2008,
abstract = {We prove the existence and the invariance of a Gibbs measure associated to the defocusing sub-quintic Nonlinear Schrödinger equations on the disc of the plane $\mathbb\{R\}^2$. We also prove an estimate giving some intuition to what may happen in $3$ dimensions.},
affiliation = {Université Lille I Département de Mathématiques 59 655 Villeneuve d’Ascq Cedex (France)},
author = {Tzvetkov, Nikolay},
journal = {Annales de l’institut Fourier},
keywords = {Nonlinear Schrödinger; eigenfunctions; dispersive equations; invariant measures; nonlinear Schrödinger equation},
language = {eng},
number = {7},
pages = {2543-2604},
publisher = {Association des Annales de l’institut Fourier},
title = {Invariant measures for the defocusing Nonlinear Schrödinger equation},
url = {http://eudml.org/doc/10386},
volume = {58},
year = {2008},
}

TY - JOUR
AU - Tzvetkov, Nikolay
TI - Invariant measures for the defocusing Nonlinear Schrödinger equation
JO - Annales de l’institut Fourier
PY - 2008
PB - Association des Annales de l’institut Fourier
VL - 58
IS - 7
SP - 2543
EP - 2604
AB - We prove the existence and the invariance of a Gibbs measure associated to the defocusing sub-quintic Nonlinear Schrödinger equations on the disc of the plane $\mathbb{R}^2$. We also prove an estimate giving some intuition to what may happen in $3$ dimensions.
LA - eng
KW - Nonlinear Schrödinger; eigenfunctions; dispersive equations; invariant measures; nonlinear Schrödinger equation
UR - http://eudml.org/doc/10386
ER -

References

top
  1. R. Anton, Cubic nonlinear Schrödinger equation on three dimensional balls with radial data, (2006) 
  2. A. Ayache, N. Tzvetkov, L p properties of Gaussian random series Zbl1145.60019
  3. J. Bourgain, Periodic nonlinear Schrödinger equation and invariant measures, Comm. Math. Phys. 166 (1994), 1-26 Zbl0822.35126MR1309539
  4. J. Bourgain, Invariant measures for the 2D-defocusing nonlinear Schrödinger equation, Comm. Math. Phys. 176 (1996), 421-445 Zbl0852.35131MR1374420
  5. N. Burq, P. Gérard, N. Tzvetkov, Zonal low regularity solutions of the nonlinear Schrödinger equation on S d , (2002) Zbl1003.35113
  6. N. Burq, P. Gérard, N. Tzvetkov, Multilinear eigenfunction estimates and global existence for the three dimensional nonlinear Schrödinger equations, Ann. ENS 38 (2005), 255-301 Zbl1116.35109MR2144988
  7. M. Christ, J. Colliander, T. Tao, Ill-posedness for nonlinear Schrödinger and wave equations, (2003) Zbl1048.35101
  8. J. Ginibre, Le problème de Cauchy pour des EDP semi-linéaires périodiques en variables d’espace (d’après Bourgain), Séminaire Bourbaki, Exp. 796, Astérisque 237 (1996), 163-187 Zbl0870.35096
  9. S. Kuksin, A. Shirikyan, Randomly forced CGL equation : stationary measures and the inviscid limit, J. Phys A 37 (2004), 1-18 Zbl1047.35061MR2039838
  10. J. Lebowitz, R. Rose, E. Speer, Statistical dynamics of the nonlinear Schrödinger equation, J. Stat. Physics V 50 (1988), 657-687 Zbl1084.82506MR939505
  11. E. Stein, G. Weiss, Introduction to Fourier analysis on euclidean spaces, 32 (1971), Princeton University PressPrinceton N.J.P. N. Zbl0232.42007MR304972
  12. N. Tzvetkov, Invariant measures for the nonlinear Schrödinger equation on the disc, Dynamics of PDE 3 (2006), 111-160 Zbl1142.35090MR2227040
  13. P. Zhidkov, Korteweg de Vries and nonlinear Schrödinger equations : qualitative theory, 1756 (2001), Springer-Verlag, Berlin Zbl0987.35001MR1831831

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.