Invariant measures for the defocusing Nonlinear Schrödinger equation
- [1] Université Lille I Département de Mathématiques 59 655 Villeneuve d’Ascq Cedex (France)
Annales de l’institut Fourier (2008)
- Volume: 58, Issue: 7, page 2543-2604
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topTzvetkov, Nikolay. "Invariant measures for the defocusing Nonlinear Schrödinger equation." Annales de l’institut Fourier 58.7 (2008): 2543-2604. <http://eudml.org/doc/10386>.
@article{Tzvetkov2008,
abstract = {We prove the existence and the invariance of a Gibbs measure associated to the defocusing sub-quintic Nonlinear Schrödinger equations on the disc of the plane $\mathbb\{R\}^2$. We also prove an estimate giving some intuition to what may happen in $3$ dimensions.},
affiliation = {Université Lille I Département de Mathématiques 59 655 Villeneuve d’Ascq Cedex (France)},
author = {Tzvetkov, Nikolay},
journal = {Annales de l’institut Fourier},
keywords = {Nonlinear Schrödinger; eigenfunctions; dispersive equations; invariant measures; nonlinear Schrödinger equation},
language = {eng},
number = {7},
pages = {2543-2604},
publisher = {Association des Annales de l’institut Fourier},
title = {Invariant measures for the defocusing Nonlinear Schrödinger equation},
url = {http://eudml.org/doc/10386},
volume = {58},
year = {2008},
}
TY - JOUR
AU - Tzvetkov, Nikolay
TI - Invariant measures for the defocusing Nonlinear Schrödinger equation
JO - Annales de l’institut Fourier
PY - 2008
PB - Association des Annales de l’institut Fourier
VL - 58
IS - 7
SP - 2543
EP - 2604
AB - We prove the existence and the invariance of a Gibbs measure associated to the defocusing sub-quintic Nonlinear Schrödinger equations on the disc of the plane $\mathbb{R}^2$. We also prove an estimate giving some intuition to what may happen in $3$ dimensions.
LA - eng
KW - Nonlinear Schrödinger; eigenfunctions; dispersive equations; invariant measures; nonlinear Schrödinger equation
UR - http://eudml.org/doc/10386
ER -
References
top- R. Anton, Cubic nonlinear Schrödinger equation on three dimensional balls with radial data, (2006)
- A. Ayache, N. Tzvetkov, properties of Gaussian random series Zbl1145.60019
- J. Bourgain, Periodic nonlinear Schrödinger equation and invariant measures, Comm. Math. Phys. 166 (1994), 1-26 Zbl0822.35126MR1309539
- J. Bourgain, Invariant measures for the 2D-defocusing nonlinear Schrödinger equation, Comm. Math. Phys. 176 (1996), 421-445 Zbl0852.35131MR1374420
- N. Burq, P. Gérard, N. Tzvetkov, Zonal low regularity solutions of the nonlinear Schrödinger equation on , (2002) Zbl1003.35113
- N. Burq, P. Gérard, N. Tzvetkov, Multilinear eigenfunction estimates and global existence for the three dimensional nonlinear Schrödinger equations, Ann. ENS 38 (2005), 255-301 Zbl1116.35109MR2144988
- M. Christ, J. Colliander, T. Tao, Ill-posedness for nonlinear Schrödinger and wave equations, (2003) Zbl1048.35101
- J. Ginibre, Le problème de Cauchy pour des EDP semi-linéaires périodiques en variables d’espace (d’après Bourgain), Séminaire Bourbaki, Exp. 796, Astérisque 237 (1996), 163-187 Zbl0870.35096
- S. Kuksin, A. Shirikyan, Randomly forced CGL equation : stationary measures and the inviscid limit, J. Phys A 37 (2004), 1-18 Zbl1047.35061MR2039838
- J. Lebowitz, R. Rose, E. Speer, Statistical dynamics of the nonlinear Schrödinger equation, J. Stat. Physics V 50 (1988), 657-687 Zbl1084.82506MR939505
- E. Stein, G. Weiss, Introduction to Fourier analysis on euclidean spaces, 32 (1971), Princeton University PressPrinceton N.J.P. N. Zbl0232.42007MR304972
- N. Tzvetkov, Invariant measures for the nonlinear Schrödinger equation on the disc, Dynamics of PDE 3 (2006), 111-160 Zbl1142.35090MR2227040
- P. Zhidkov, Korteweg de Vries and nonlinear Schrödinger equations : qualitative theory, 1756 (2001), Springer-Verlag, Berlin Zbl0987.35001MR1831831
Citations in EuDML Documents
top- Laurent Thomann, Random data Cauchy problem for supercritical Schrödinger equations
- Nicolas Rougerie, From bosonic grand-canonical ensembles to nonlinear Gibbs measures
- K. Kirkpatrick, Solitons and Gibbs Measures for Nonlinear Schrödinger Equations
- Nicolas Burq, Gilles Lebeau, Injections de Sobolev probabilistes et applications
- Nicolas Burq, Laurent Thomann, Nikolay Tzvetkov, Long time dynamics for the one dimensional non linear Schrödinger equation
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.