Loop groups and equations of KdV type

Graeme Segal; George Wilson

Publications Mathématiques de l'IHÉS (1985)

  • Volume: 61, page 5-65
  • ISSN: 0073-8301

How to cite

top

Segal, Graeme, and Wilson, George. "Loop groups and equations of KdV type." Publications Mathématiques de l'IHÉS 61 (1985): 5-65. <http://eudml.org/doc/104004>.

@article{Segal1985,
author = {Segal, Graeme, Wilson, George},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {Sato-theory; KdV-type equations; Grassmannian constructions; -function; loop groups},
language = {eng},
pages = {5-65},
publisher = {Institut des Hautes Études Scientifiques},
title = {Loop groups and equations of KdV type},
url = {http://eudml.org/doc/104004},
volume = {61},
year = {1985},
}

TY - JOUR
AU - Segal, Graeme
AU - Wilson, George
TI - Loop groups and equations of KdV type
JO - Publications Mathématiques de l'IHÉS
PY - 1985
PB - Institut des Hautes Études Scientifiques
VL - 61
SP - 5
EP - 65
LA - eng
KW - Sato-theory; KdV-type equations; Grassmannian constructions; -function; loop groups
UR - http://eudml.org/doc/104004
ER -

References

top
  1. [1] H. AIRAULT, H. P. MCKEAN, J. MOSER, Rational and elliptic solutions of the Korteweg-de Vries equation and a related many-body problem, Comm. Pure. Appl. Math. 30 (1977), 95-148. Zbl0338.35024MR58 #31214
  2. [2] M. ADLER and J. MOSER, On a class of polynomials connected with the Korteweg-de Vries equation, Comm. Math. Phys. 61 (1978), 1-30. Zbl0428.35067MR58 #18554
  3. [3] H. F. BAKER, Note on the foregoing paper "Commutative ordinary differential operators", by J. L. BURCHNALL and T. W. CHAUNDY, Proc. Royal Soc. London (A) 118 (1928), 584-593. Zbl54.0439.02JFM54.0439.02
  4. [4] J. L. BURCHNALL, T. W. CHAUNDY, a) Commutative ordinary differential operators, Proc. London Math. Soc. 21 (1923), 420-440 ; b) Commutative ordinary differential operators, Proc. Royal Soc. London (A) 118 (1928), 557-583; c) Commutative ordinary differential operators II. The identity Pn = Qm, Proc. Royal Soc. London (A) 134 (1932), 471-485. Zbl0003.25701
  5. [5] E. DATE, M. JIMBO, M. KASHIWARA, T. MIWA, Transformation groups for soliton equations : I. Proc. Japan Acad. 57A (1981), 342-347 ; II. Ibid., 387-392 ; III. J. Phys. Soc. Japan 50 (1981), 3806-3812 ; IV. Physica 4D (1982), 343-365 ; V. Publ. RIMS, Kyoto Univ. 18 (1982), 1111-1119 ; VI. J. Phys. Soc. Japan 50 (1981), 3813-3818 ; VII. Publ. RIMS, Kyoto Univ. 18 (1982), 1077-1110. Zbl0571.35099
  6. [6] V. G. DRINFEL'D, V. V. SOKOLOV, Equations of Korteweg-de Vries type and simple Lie algebras, Dokl. Akad. Nauk SSSR 258 (I) (1981), 11-16 ; Soviet Math. Dokl. 23 (1981), 457-462. Zbl0513.35073MR83k:58040
  7. [7] C. D'SOUZA, Compactification of generalized Jacobians, Proc. Ind. Acad. Sci. 88A (1979), 421-457. Zbl0442.14016MR81h:14004
  8. [8] F. EHLERS, H. KNÖRRER, An algebro-geometric interpretation of the Bäcklund transformation for the Korteweg-de Vries equation, Comment. Math. Helvetici 57 (1982), 1-10. Zbl0516.35071
  9. [9] I. M. GEL'FAND, L. A. DIKII, Fractional powers of operators and Hamiltonian systems, Funct. Anal. Appl. 10 (4) (1976), 13-29 (Russian), 259-273 (English). Zbl0356.35072MR55 #6484
  10. [10] I. M. KRICHEVER, Integration of non-linear equations by methods of algebraic geometry, Funct. Anal. Appl. 11 (1) (1977), 15-31 (Russian), 12-26 (English). Zbl0346.35028
  11. [11] I. M. KRICHEVER, Methods of algebraic geometry in the theory of non-linear equations, Uspekhi Mat. Nauk 32 (6) (1977), 183-208 ; Russian Math. Surveys 32 (6) (1977), 185-213. Zbl0386.35002
  12. [12] B. A. KUPERSHMIDT, G. WILSON, Modifying Lax equations and the second Hamiltonian structure, Inventiones Math. 62 (1981), 403-436. Zbl0464.35024MR84m:58055
  13. [13] I. G. MACDONALD, Symmetric functions and Hall polynomials, Oxford University Press, 1979. Zbl0487.20007MR84g:05003
  14. [14] I. Yu. MANIN, Algebraic aspects of non-linear differential equations, Itogi Nauki i Tekhniki, ser. Sovremennye Problemi Matematiki 11 (1978), 5-152; J. Sov. Math. 11 (1) (1979), 1-122. Zbl0419.35001
  15. [15] D. MUMFORD, Abelian varieties, Oxford University Press, 1974. 
  16. [16] D. MUMFORD, An algebro-geometric construction of commuting operators and of solutions to the Toda lattice equation, Korteweg-de Vries equation and related non-linear equations, Proceedings of Symposium on Algebraic Geometry (M. NAGATA, ed.), Kinokuniya, Tokyo, 1978. Zbl0423.14007
  17. [17] A. PRESSLEY, G. SEGAL, Loop groups and their representations (Book in preparation ; Oxford University Press). Zbl0618.22011
  18. [18] G. SEGAL, Unitary representations of some infinite dimensional groups, Commun. Math. Phys. 80 (1981), 301-342. Zbl0495.22017MR82k:22004
  19. [19] B. SIMON, Notes on infinite determinants of Hilbert space operators, Adv. in Math. 24 (1977), 244-273. Zbl0353.47008MR58 #2401
  20. [20] V. V. SOKOLOV, A. B. SHABAT, (L, A)-pairs and a substitution of Riccati type, Funct. Anal. Appl. 14 (2) (1980), 79-80 (Russian), 148-150 (English). Zbl0494.35025MR81k:35152
  21. [21] J.-L. VERDIER, Equations différentielles algébriques, Séminaire Bourbaki (1977-1978), Exposé 512 = Lecture notes in Math. 710, 101-122. Zbl0414.14012MR81j:58050
  22. [22] G. WILSON, Commuting flows and conservation laws for Lax equations, Math. Proc. Camb. Phil. Soc. 86 (1979), 131-143. Zbl0427.35024MR80k:58059
  23. [23] V. E. ZAKHAROV, A. B. SHABAT, Integration of the non-linear equations of mathematical physics by the inverse scattering method II, Funct. Anal. Appl. 13 (3) (1979), 13-22 (Russian), 166-174 (English). Zbl0448.35090MR82m:35137
  24. [24] P. DELIGNE, M. RAPOPORT, Les schémas de modules de courbes elliptiques, in Modular functions of one variable, II (P. DELIGNE and W. KUYK, eds.), Lecture Notes in Math. 349, Springer, 1973. Zbl0281.14010MR49 #2762
  25. [25] H. P. MCKEAN, E. TRUBOWITZ, Hill's operator and hyperelliptic function theory in the presence of infinitely many branch points, Comm. Pure Appl. Math. 29 (1976), 143-226. Zbl0339.34024MR55 #761
  26. [26] M. MULASE, Geometry of soliton equations, MSRI preprint 035-83, Berkeley (1983). Zbl0536.58015MR85h:14022
  27. [27] M. MULASE, Algebraic geometry of soliton equations I, MSRI preprint 040-83, Berkeley (1983). Zbl0536.58015MR85h:14022
  28. [28] M. MULASE, Structure of the solution space of soliton equations, MSRI preprint 041-83, Berkeley (1983). 
  29. [29] M. MULASE, Complete integrability of the Kadomtsev-Petviashvili equation, MSRI preprint 053-83, Berkeley (1983). 
  30. [30] M. MULASE, Algebraic geometry of soliton equations, Proc. Japan Acad. 59, Ser. A (1983), 285-288. Zbl0536.58015MR85h:14022
  31. [31] M. MULASE, Cohomological structure of solutions of soliton equations, isospectral deformation of ordinary differential operators and a characterization of Jacobian varieties, MSRI preprint 003-84-7, Berkeley (1984). 
  32. [32] M. SATO, Y. SATO, Soliton equations as dynamical systems on infinite dimensional Grassmann manifold, Preprint, 13 pp. (date unknown). Zbl0528.58020
  33. [33] T. SHIOTA, Characterization of Jacobian varieties in terms of soliton equations, Preprint, 63 pp., Harvard University (1984). Zbl0621.35097
  34. [34] C. J. REGO, The compactified Jacobian, Ann. Scient. Ec. Norm. Sup. 13 (1980), 211-223. Zbl0478.14024MR81k:14006
  35. [35] G. WILSON, Habillage et fonctions τ, C. R. Acad. Sc. Paris, 299, Sér. I, n° 13 (1984), 587-590. Zbl0564.35086MR86k:58057
  36. [36] B. A. DUBROVIN, Theta functions and non-linear equations, Uspekhi Mat. Nauk 36 (2) (1981), 11-80 ; Russian Math. Surveys 36 (2) (1981), 11-92. Zbl0478.58038MR83i:35149

Citations in EuDML Documents

top
  1. Kanehisa Takasaki, Hidden symmetries of integrable systems in Yang-Mills theory and Kähler geometry
  2. R. Fioresi, C. Hacon, On infinite-dimensional grassmannians and their quantum deformations
  3. Bernard Malgrange, Déformations isomonodromiques, forme de Liouville, fonction τ
  4. Leon D. Fairbanks, Lax equation representation of certain completely integrable systems
  5. Emma Previato, George Wilson, Differential operators and rank 2 bundles over elliptic curves
  6. Luc Haine, The spectral matrices of Toda solitons and the fundamental solution of some discrete heat equations
  7. Emil Horozov, Calogero-Moser spaces and an adelic W -algebra
  8. Eduard Looijenga, Intersection theory on Deligne-Mumford compactifications
  9. David Ben-Zvi, Edward Frenkel, Spectral curves, opers and integrable systems
  10. François Ducrot, Fibré déterminant et courbes relatives

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.