Monodromy of hypergeometric functions and non-lattice integral monodromy
Publications Mathématiques de l'IHÉS (1986)
- Volume: 63, page 5-89
- ISSN: 0073-8301
Access Full Article
topHow to cite
topDeligne, Pierre, and Mostow, G. D.. "Monodromy of hypergeometric functions and non-lattice integral monodromy." Publications Mathématiques de l'IHÉS 63 (1986): 5-89. <http://eudml.org/doc/104012>.
@article{Deligne1986,
author = {Deligne, Pierre, Mostow, G. D.},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {hypergeometric functions; arithmetic monodromy group; lattice in projective unitary group; complex unit ball with hermitian metric; orbits of group of isometries; monodromy of integrals; compactification; minimal covering space},
language = {eng},
pages = {5-89},
publisher = {Institut des Hautes Études Scientifiques},
title = {Monodromy of hypergeometric functions and non-lattice integral monodromy},
url = {http://eudml.org/doc/104012},
volume = {63},
year = {1986},
}
TY - JOUR
AU - Deligne, Pierre
AU - Mostow, G. D.
TI - Monodromy of hypergeometric functions and non-lattice integral monodromy
JO - Publications Mathématiques de l'IHÉS
PY - 1986
PB - Institut des Hautes Études Scientifiques
VL - 63
SP - 5
EP - 89
LA - eng
KW - hypergeometric functions; arithmetic monodromy group; lattice in projective unitary group; complex unit ball with hermitian metric; orbits of group of isometries; monodromy of integrals; compactification; minimal covering space
UR - http://eudml.org/doc/104012
ER -
References
top- [1] APPEL, P., a) CR Acad. Sci., Paris, 16 février 1880 ; b) Sur les fonctions hygergéométriques de deux variables, J. de Math., 3e ser., VIII (1882), 173-216.
- [2] BOREL, A., a) Density properties for certain subgroups of semi-simple groups without compact components, Ann. of Math., 72 (1960), 179-188 ; b) Reduction theory for arithmetic groups, Proc. Symposia in Pure Math., IX (1966), 20-25. Zbl0094.24901MR23 #A964
- [3] BOREL, A.-Harish Chandra, Arithmetic subgroups of algebraic groups, Ann. of Math., 75 (1962), 485-535. Zbl0107.14804MR26 #5081
- [4] BOURBAKI, N., Groupes et Algèbres de Lie, chap. V, Paris, Herman, 1968. Zbl0186.33001
- [5] EULER, L., “Specimen transformations singularis serierum”, Sept. 3, 1778, Nova Acta Petropolitana, XII (1801), 58-78.
- [6] FRICKE, R., and KLEIN, F., Vorlesungen über die Theorie der Automorphen Functionen, Bd. I, Leipzig, Teubner, 1897. JFM28.0334.01
- [7] FOX, R. H., Covering spaces with singularities, in Lefschetz Symposium, Princeton Univ. Press (1957), 243-262. Zbl0079.16505MR23 #A626
- [8] FUCHS, L., Zur Theorie der linearen Differential gleichungen mit verändlerichen Coeffizienten, J. r. und angew. Math., 66 (1866), 121-160.
- [9] HERMITE, C., Sur quelques équations différentielles linéaires, J. r. und angew. Math., 79 (1875), 111-158.
- [10] HOCHSCHILD, G. P., The Structure of Lie Groups, Holden-Day, San Francisco, 1965. Zbl0131.02702MR34 #7696
- [11] KNESER, M., Strong approximation, Proc. of Symposia in Pure Math., IX (1966), 187-196. Zbl0201.37904MR35 #4225
- [12] LAURICELLA, Sulle funzioni ipergeometriche a piu variabili, Rend. di Palermo, VII (1893), 111-158. JFM25.0756.01
- [13] LE VAVASSEUR, R., Sur le système d'équations aux dérivées partielles simultanées auxquelles satisfait la série hypergéométrique à deux variables, J. Fac. Sci. Toulouse, VII (1896), 1-205. JFM25.0608.02
- [14] MOSTOW, G. D., a) Existence of nonarithmetic monodromy groups, Proc. Nat. Acad. Sci., 78 (1981), 5948-5950 ; b) Generalized Picard lattices arising from half-integral conditions, Publ. Math. I.H.E.S., this volume, 91-106. Zbl0551.32024MR86b:22020
- [15] MUMFORD, D., Geometric Invariant Theory, Berlin, Springer, 1965. Zbl0147.39304MR35 #5451
- [16] PICARD, E., a) Sur une extension aux fonctions de deux variables du problème de Riemann relatif aux fonctions hypergéométriques, Ann. ENS, 10 (1881), 305-322 ; b) Sur les fonctions hyperfuchsiennes provenant des séries hypergéométriques de deux variables, Ann. ENS, III, 2 (1885), 357-384 ; c) Id., Bull. Soc. Math. Fr., 15 (1887), 148-152. JFM19.0429.01
- [17] POCHHAMMER, L., Ueber hypergeometrische Functionen höherer Ordnung, J. r. und angew. Math., 71 (1870), 316-362. JFM02.0265.01
- [18] RIEMANN, B., Beiträge zur Theorie der durch die Gauss'sche Reihe F(α, β, γ, χ) darstellbaren Functionen, Abh. Kon. Ges. d. Wiss zu Göttingen, VII (1857), Math. Classe, A-22.
- [19] SCHAFLI, Ueber die Gauss'sche hypergeometrische Reihe, Math. Ann., III (1871), 286-295. JFM02.0122.02
- [20] SCHWARZ, H. A., Ueber diejenigen Fälle in welchen die Gauss'sche hypergeometrische Reihe eine algebraisches Function ihres vierten Elementes darstellt, J. r. und angew. Math., 75 (1873), 292-335. JFM05.0146.03
- [21] TAKEUCHI, K., Commensurability classes of arithmetic discrete triangle groups, J. Fac. Sci. Univ. Tokyo, 24 (1977), 201-212. Zbl0365.20055MR57 #3077
- [22] TERADA, T., Problème de Riemann et fonctions automorphes provenant des fonctions hypergéometriques de plusieurs variables, J. Math. Kyoto Univ., 13 (1973), 557-578. Zbl0279.32022MR58 #1299
- [23] TITS, J., Classification of algebraic semi-simple groups, Proc. of Symposia in Pure Math., IX (1966), 33-62. Zbl0238.20052MR37 #309
- [24] WHITTAKER, E. T., and WATSON, G. N., A course in modern analysis, Cambridge, University Press, 1962.
- [25] ZUCKER, S., Hodge theory with degenerating coefficients, I, Ann. of Math., 109 (1979), 415-476. Zbl0446.14002MR81a:14002
Citations in EuDML Documents
top- G. D. Mostow, Generalized Picard lattices arising from half-integral conditions
- Michael Kapovich, John J. Millson, The relative deformation theory of representations and flat connections and deformations of linkages in constant curvature spaces
- Jean-Claude Hausmann, Allen Knutson, The cohomology ring of polygon spaces
- Selim Ghazouani, [unknown]
- Keiji Matsumoto, On modular functions in 2 variables attached to a family of hyperelliptic curves of genus 3
- Slavyana Geninska, On arithmetic Fuchsian groups and their characterizations
- Keiji Matsumoto, Masaaki Yoshida, Configuration space of 8 points on the projective line and a 5-dimensional Picard modular group
- Michael Gromov, Richard Schoen, Harmonic maps into singular spaces and -adic superrigidity for lattices in groups of rank one
- Daniel Allcock, James A. Carlson, Domingo Toledo, Hyperbolic geometry and moduli of real cubic surfaces
- Julien Paupert, Applications moment, polygones de configurations et groupes discrets de réflexions complexes dans
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.