Harmonic maps into singular spaces and -adic superrigidity for lattices in groups of rank one
Michael Gromov; Richard Schoen
Publications Mathématiques de l'IHÉS (1992)
- Volume: 76, page 165-246
- ISSN: 0073-8301
Access Full Article
topHow to cite
topGromov, Michael, and Schoen, Richard. "Harmonic maps into singular spaces and $p$-adic superrigidity for lattices in groups of rank one." Publications Mathématiques de l'IHÉS 76 (1992): 165-246. <http://eudml.org/doc/104083>.
@article{Gromov1992,
author = {Gromov, Michael, Schoen, Richard},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {-adic representations; -adic superrigidity; harmonic mappings; nonpositively curved metric spaces; lattices in noncompact semisimple Lie groups; arithmeticity for lattices; isometry groups; quaternionic hyperbolic space; Cayley plane},
language = {eng},
pages = {165-246},
publisher = {Institut des Hautes Études Scientifiques},
title = {Harmonic maps into singular spaces and $p$-adic superrigidity for lattices in groups of rank one},
url = {http://eudml.org/doc/104083},
volume = {76},
year = {1992},
}
TY - JOUR
AU - Gromov, Michael
AU - Schoen, Richard
TI - Harmonic maps into singular spaces and $p$-adic superrigidity for lattices in groups of rank one
JO - Publications Mathématiques de l'IHÉS
PY - 1992
PB - Institut des Hautes Études Scientifiques
VL - 76
SP - 165
EP - 246
LA - eng
KW - -adic representations; -adic superrigidity; harmonic mappings; nonpositively curved metric spaces; lattices in noncompact semisimple Lie groups; arithmeticity for lattices; isometry groups; quaternionic hyperbolic space; Cayley plane
UR - http://eudml.org/doc/104083
ER -
References
top- [ABB] S. B. ALEXANDER, I. D. BERG and R. L. BISHOP, The Riemannian obstacle problem, III. J. Math. 31 (1987), 167-184. Zbl0625.53045MR88a:53038
- [Ag] S. AGMON, Unicité et convexité dans les problèmes différentiels, Sém. d'Analyse Sup., Univ. de Montréal, 1965. Zbl0147.07702
- [Al] F. J. ALMGREN, Jr., Q-valued functions minimizing Dirichlet's integral and the regularity of area minimizing rectifiable currents up to codimension two, preprint, Princeton University.
- [B] K. BROWN, Buildings, Springer, New York, 1989. Zbl0715.20017MR90e:20001
- [BT] F. BRUHAT and J. TITS, Groupes réductifs sur un corps local. I. Données radicielles valuées, Publ. Math. IHES 41 (1972), 5-251. Zbl0254.14017MR48 #6265
- [C] K. CORLETTE, Archimedian superrigidity and hyperbolic geometry, Annals of Math., to appear. Zbl0768.53025
- [Ch] Y. J. CHIANG, Harmonic maps of V-manifolds, Ann. Global Anal. Geom. 8 (1990), 315-344. Zbl0679.58014MR92c:58021
- [DM] P. DELIGNE and G. D. MOSTOW, Monodromy of hypergeometric functions and non-lattice integral monodromy, Publ. Math. IHES 63 (1986), 5-89. Zbl0615.22008MR88a:22023a
- [ES] J. EELLS and J. H. SAMPSON, Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964), 109-160. Zbl0122.40102MR29 #1603
- [F1] H. FEDERER, Geometric Measure Theory, Springer-Verlag, New York, 1969. Zbl0176.00801MR41 #1976
- [F2] H. FEDERER, The singular sets of area minimizing rectifiable currents with codimension one and of area minimizing flat chains modulo two with arbitrary codimension, Bull. Amer. Math. Soc. 79 (1970), 761-771. Zbl0194.35803MR41 #5601
- [G] H. GARLAND, P-adic curvature and the cohomology of discrete subgroups, Ann. of Math. 97 (1973), 375-423. Zbl0262.22010MR47 #8719
- [GL] N. GAROFALO and F. H. LIN, Monotonicity properties of variational integrals, Ap weights and unique continuation, Indiana Math. J. 35 (1986), 245-268. Zbl0678.35015MR88b:35059
- [GP] M. GROMOV, P, PANSU, Rigidity of lattices: An introduction, to appear in Springer Lecture Notes. Zbl0786.22015
- [GPS] M. GROMOV and I. PIATETSKI-SHAPIRO, Non-arithmetic groups in Lobachevsky spaces, Publ. Math. IHES 66 (1988), 93-103. Zbl0649.22007MR89j:22019
- [GR] H. GARLAND and M. S. RAGHUNATHAN, Fundamental domains for lattices in R-rank 1 groups, Ann. of Math. 92 (1970), 279-326. Zbl0206.03603MR42 #1943
- [Gro] M. GROMOV, Partial differential relations, Springer Verlag, 1986. Zbl0651.53001MR90a:58201
- [Ham] R. HAMILTON, Harmonic maps of manifolds with boundary, Lecture Notes 471, Springer 1975. Zbl0308.35003MR58 #2872
- [Har] P. HARTMAN, On homotopic harmonic maps, Can. J. Math. 19 (1967), 673-687. Zbl0148.42404MR35 #4856
- [HV] P. de la HARPE and A. VALETTE, La propriété (T) de Kazhdan pour les groupes localement compacts, Astérisque 175 (1989), Soc. Math. de France. Zbl0759.22001
- [K] H. KARCHER, Riemannian center of mass and mollifier smoothing, Comm. Pure and Appl. Math. 30 (1977), 509-541. Zbl0354.57005MR56 #1350
- [La1] E. M. LANDIS, A three-sphere theorem, Dokl. Akad. Nauk S.S.S.R. 148 (1963), 277-279. Translated in Soviet Math. 4 (1963), 76-78. Zbl0145.14302MR27 #443
- [La2] E. M. LANDIS, Some problems on the qualitative theory of second order elliptic equations (case of several variables), Uspekhi Mat. Nauk. 18 (1963), 3-62. Translated in Russian Math. Surveys 18 (1963), 1-62. Zbl0125.05802
- [L] M. L. LEITE, Harmonic mappings of surfaces with respect to degenerate metrics, Amer. J. Math. 110 (1988), 399-412. Zbl0646.58018MR89h:58046
- [Lin] F. H. LIN, Nonlinear theory of defects in nematic liquid crystals, phase transition and flow phenomena, Comm. Pure Appl. Math. 42 (1989), 789-814. Zbl0703.35173MR90g:82076
- [Mak] V. MAKAROV, On a certain class of discrete Lobachevsky space groups with infinite fundamental domain of finite measure, Soviet Math. Dokl. 7 (1966), 328-331. Zbl0146.16502MR36 #3566
- [Mar] G. MARGULIS, Discrete groups of motions of manifolds of nonpositive curvature, AMS Translations 109 (1977), 33-45. Zbl0367.57012
- [Mos] G. D. MOSTOW, On a remarkable class of polyhedra in complex hyperbolic space, Pac. J. Math. 86 (1980), 171-276. Zbl0456.22012MR82a:22011
- [Mi] K. MILLER, Three circles theorems in partial differential equations and applications to improperly posed problems, Arch. for Rat. Mech. and Anal. 16 (1964), 126-154. Zbl0145.14203MR29 #1435
- [Mo] C. B. MORREY, Multiple integrals in the calculus of variations, Springer-Verlag, New York, 1966. Zbl0142.38701MR34 #2380
- [N] I. G. NIKOLAEV, Solution of Plateau problem in spaces with curvature ≤ K, Sib, Math. J. 20 : 2 (1979), 346-353. Zbl0434.53045MR80k:58041
- [S] R. SCHOEN, Analytic aspects of the harmonic map problem, Math. Sci. Res. Inst. Publ. vol. 2, Springer, Berlin, 1984, 321-358. Zbl0551.58011MR86b:58032
- [Se] A. SELBERG, Recent developments in the theory of discontinuous groups of motions of symmetric spaces, Springer Lecture Notes 118 (1970), 99-120. Zbl0197.18002MR41 #8595
- [Ser] J. P. SERRE, Trees, Springer Verlag, 1980. Zbl0548.20018MR82c:20083
- [Sim] C. SIMPSON, Integrality of rigid local systems of rank two on a smooth projective variety, preprint.
- [Siu] Y. T. SIU, The complex analyticity of harmonic maps and the strong rigidity of compact Kähler manifolds, Ann. of Math. 112 (1980), 73-112. Zbl0517.53058MR81j:53061
- [Ste] K. STEIN, Analytische Zerlegungen komplexer Räume, Math. Ann. 132 (1956), 63-93. Zbl0074.06301MR18,649c
- [SU] R. SCHOEN and K. UHLENBECK, A regularity theory for harmonic maps, J. Diff. Geom. 17 (1982), 307-335. Zbl0521.58021MR84b:58037a
- [SY] R. SCHOEN and S. T. YAU, Harmonic maps and the topology of stable hyper-surfaces and manifolds of nonnegative Ricci curvature, Comment. Math. Helv. 39 (1976), 333-341. Zbl0361.53040MR55 #11302
- [V] E. VINBERG, Discrete groups generated by reflections in Lobachevsky spaces, Math. USSR-Sb 1 (1967), 429-444. Zbl0166.16303
- [Z] W. P. ZIEMER, Weakly Differentiable Functions, Springer-Verlag, Grad. Texts in Math., 1989. Zbl0692.46022MR91e:46046
- [Zim] R. J. ZIMMER, Ergodic Theory and Semi-simple Groups, Birkhäuser, Boston, Basel, Stuttgart, 1984. Zbl0571.58015MR86j:22014
Citations in EuDML Documents
top- A. Majumdar, J. M. Robbins, M. Zyskin, Energies of -valued harmonic maps on polyhedra with tangent boundary conditions
- Édouard Lebeau, Applications harmoniques entre graphes finis et un théorème de superrigidité
- Édouard Lebeau, Applications harmoniques entre graphes finis et un théorème de superrigidité
- Thibaut Delcroix, Les groupes de Burger-Mozes ne sont pas kählériens
- Slavyana Geninska, On arithmetic Fuchsian groups and their characterizations
- Zahra Sinaei, Riemannian Polyhedra and Liouville-Type Theorems for Harmonic Maps
- Ngaiming Mok, Fibrations of compact Kähler manifolds in terms of cohomological properties of their fundamental groups
- Brendon Lasell, Mohan Ramachandran, Observations on harmonic maps and singular varieties
- Katsutoshi Yamanoi, On fundamental groups of algebraic varieties and value distribution theory
- Terrence Napier, Mohan Ramachandran, [unknown]
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.