A 1 -homotopy theory of schemes

Fabien Morel; Vladimir Voevodsky

Publications Mathématiques de l'IHÉS (1999)

  • Volume: 90, page 45-143
  • ISSN: 0073-8301

How to cite

top

Morel, Fabien, and Voevodsky, Vladimir. "$A^1$-homotopy theory of schemes." Publications Mathématiques de l'IHÉS 90 (1999): 45-143. <http://eudml.org/doc/104163>.

@article{Morel1999,
author = {Morel, Fabien, Voevodsky, Vladimir},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {Quillen-Thomason -theory; homotopy category of schemes; Nisnevich topology; homotopy category of simplicial sheaves},
language = {eng},
pages = {45-143},
publisher = {Institut des Hautes Études Scientifiques},
title = {$A^1$-homotopy theory of schemes},
url = {http://eudml.org/doc/104163},
volume = {90},
year = {1999},
}

TY - JOUR
AU - Morel, Fabien
AU - Voevodsky, Vladimir
TI - $A^1$-homotopy theory of schemes
JO - Publications Mathématiques de l'IHÉS
PY - 1999
PB - Institut des Hautes Études Scientifiques
VL - 90
SP - 45
EP - 143
LA - eng
KW - Quillen-Thomason -theory; homotopy category of schemes; Nisnevich topology; homotopy category of simplicial sheaves
UR - http://eudml.org/doc/104163
ER -

References

top
  1. [1] M. ARTIN, On the joins of Hensel rings, Advances in Math. 7 (1971), 282-296. Zbl0242.13021MR44 #6690
  2. [2] A. K. BOUSFIELD and E. M. FRIEDLANDER, Homotopy theory of Γ-spaces, spectra, and bisimplicial sets, Lecture Notes in Math. 658 (1978), 80-130. Zbl0405.55021MR80e:55021
  3. [3] A. K. BOUSFIELD and D. M. KAN, Homotopy limits, completions and localizations, Lecture Notes in Math. 304 (1972), Springer-Verlag. Zbl0259.55004MR51 #1825
  4. [4] A. K. BOUSFIELD, Constructions of factorization systems in categories, J. Pure Appl. Alg. 9 (1977), 207-220. Zbl0361.18001MR57 #17648
  5. [5] A. K. BOUSFIELD, Homotopical localizations of spaces, American J. of Math. 119 (1997), 1321-1354. Zbl0886.55011MR98m:55009
  6. [6] K. S. BROWN, Abstract homotopy theory and generalized sheaf cohomology, Trans. A.M.S., vol. 186 (1973), 419-458. Zbl0245.55007MR49 #6220
  7. [7] K. S. BROWN and S. M. GERSTEN, Algebraic K-theory and generalized sheaf cohomology, Lecture Notes in Math. 341 (1973), 266-292. Zbl0291.18017MR50 #442
  8. [8] B. DAYTON, K-theory of tetrahedra, J. Algebra (1979), 129-144. Zbl0402.18011MR80e:18007
  9. [9] W. G. DWYER, P. S. HIRSCHHORN, and D. M. KAN, Model categories and general abstract homotopy theory, In preparation. 
  10. [10] E. DROR-FARJOUN, Cellular Spaces, Null Spaces and Homotopy Localizations, Lecture Notes in Math. 1622 (1973), Springer-Verlag. Zbl0842.55001MR98f:55010
  11. [11] R. FRITSCH and R. A. PICCININI, Cellular structures in topology, Cambridge, Cambridge Univ. Press, 1990. Zbl0837.55001MR92d:55001
  12. [12] E. M. FRIEDLANDER and B. MAZUR, Filtrations on the homology of algebraic varieties, vol. 529 of Memoir of the AMS, AMS, Providence, RI, 1994. Zbl0841.14019MR95a:14023
  13. [13] A. GROTHENDIECK, M. ARTIN and J.-L. VERDIER, Théorie des topos et cohomologie étale des schémas (SGA 4), Lecture Notes in Math. 269, 270, 305 (1972-1973), Heidelberg, Springer. 
  14. [14] A. GROTHENDIECK and J. DIEUDONNÉ, Étude globale élémentaire de quelques classes de morphismes (EGA 2), Publ. Math. IHES 8, 1961. 
  15. [15] A. GROTHENDIECK and J. DIEUDONNÉ, Étude locale des schémas et des morphismes de schémas (EGA 4), Publ. Math. IHES 20, 24, 28, 32, 1964-1967. Zbl0136.15901
  16. [16] M. HOVEY, B. SHIPLEY and J. SMITH, Symmetric spectra, Preprint, 1996. Zbl0931.55006
  17. [17] J. F. JARDINE, Simplicial objects in a Grothendieck topos, Contemporary Math. 55(1) (1986), 193-239. Zbl0606.18006MR88g:18008
  18. [18] J. F. JARDINE, Simplicial presheaves, J. Pure Appl. Algebra 47 (1987), 35-87. Zbl0624.18007MR88j:18005
  19. [19] J. F. JARDINE, Stable homotopy theory of simplicial presheaves, Canadian J. Math. 39(3) (1987), 733-747. Zbl0645.18006MR88j:18004
  20. [20] A. JOYAL, Letter to A. Grothendieck (1984). 
  21. [21] S. MACLANE, Categories for working mathematician, vol. 5 of Graduate texts in Mathematics, Springer-Verlag, 1971. Zbl0232.18001MR50 #7275
  22. [22] J. P. MAY, Simplicial objects in algebraic topology, Van Nostrand, 1968. Zbl0165.26004
  23. [23] J. P. MEYER, Cosimplicial homotopies, Proc. AMS 108(1) (1990), 9-17. Zbl0683.18012MR90d:55016
  24. [24] J. S. MILNE, étale Cohomology, Princeton Math. Studies 33, Princeton University Press (1980). Zbl0433.14012MR81j:14002
  25. [25] Y. NISNEVICH, The completely decomposed topology on schemes and associated descent spectral sequences in algebraic K-theory. In Algebraic K-theory: connections with geometry and topology, p. 241-342. Kluwer Acad. Publ., Dordrecht, 1989. Zbl0715.14009MR91c:19004
  26. [26] D. QUILLEN, Homotopical algebra, Lecture Notes in Math. 43 (1973), Berlin, Springer-Verlag. Zbl0168.20903MR36 #6480
  27. [27] G. B. SEGAL, Classifying spaces and spectral sequences, Publ. Math. IHES 34 (1968), 105-112. Zbl0199.26404MR38 #718
  28. [28] A. SUSLIN, and V. VOEVODSKY, Singular homology of abstract algebraic varieties, Invent. math. 123 (1996), 61-94. Zbl0896.55002MR97e:14030
  29. [29] R. THOMASON, Algebraic K-theory and étale cohomology, Ann. Sci. ENS 18 (1985), 437-552. Zbl0596.14012MR87k:14016
  30. [30] R. THOMASON and T. TROBAUGH, Higher algebraic K-theory of schemes and of derived categories, In The Grothendieck festchrift, vol. 3 (1990), 247-436, Boston, Birkhauser. Zbl0731.14001MR92f:19001
  31. [31] V. VOEVODSKY, Homology of schemes, Selecta Mathematica, New Series 2(1) (1996), 111-153. Zbl0871.14016MR98c:14016
  32. [32] V. VOEVODSKY, The A1-homotopy theory, Proceedings of the international congress of mathematicians, Berlin, 1998. Zbl0907.19002MR99j:14018
  33. [33] C. WEIBEL, Homotopy K-theory, Contemp. Math. 83 (1987), 461-488. Theorem. Zbl0669.18007MR90d:18006

Citations in EuDML Documents

top
  1. Christophe Cazanave, Algebraic homotopy classes of rational functions
  2. Vladimir Voevodsky, Reduced power operations in motivic cohomology
  3. Frédéric Déglise, Motifs Génériques
  4. Eric M. Friedlander, Andrei Suslin, The spectral sequence relating algebraic K-theory to motivic cohomology
  5. Jens Hornbostel, Guido Kings, On non-commutative twisting in étale and motivic cohomology
  6. Jean-Pierre Marquis, Mathematical Models of Abstract Systems: Knowing abstract geometric forms
  7. Bruno Kahn, Algebraic tori as Nisnevich sheaves with transfers
  8. François Loeser, Cobordisme des variétés algébriques
  9. Vladimir Voevodsky, Motivic cohomology with 𝐙 / 2 -coefficients
  10. Joël Riou, Catégorie homotopique stable d’un site suspendu avec intervalle

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.