Motivic cohomology with -coefficients
Publications Mathématiques de l'IHÉS (2003)
- Volume: 98, page 59-104
- ISSN: 0073-8301
Access Full Article
topHow to cite
topVoevodsky, Vladimir. "Motivic cohomology with $\mathbf {Z}/2$-coefficients." Publications Mathématiques de l'IHÉS 98 (2003): 59-104. <http://eudml.org/doc/104197>.
@article{Voevodsky2003,
author = {Voevodsky, Vladimir},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {norm residue homomorphism; Bloch-Kato conjecture; Milnor conjecture; motivic cohomology operations; Beilinson-Lichtenbaum conjectures},
language = {eng},
pages = {59-104},
publisher = {Springer},
title = {Motivic cohomology with $\mathbf \{Z\}/2$-coefficients},
url = {http://eudml.org/doc/104197},
volume = {98},
year = {2003},
}
TY - JOUR
AU - Voevodsky, Vladimir
TI - Motivic cohomology with $\mathbf {Z}/2$-coefficients
JO - Publications Mathématiques de l'IHÉS
PY - 2003
PB - Springer
VL - 98
SP - 59
EP - 104
LA - eng
KW - norm residue homomorphism; Bloch-Kato conjecture; Milnor conjecture; motivic cohomology operations; Beilinson-Lichtenbaum conjectures
UR - http://eudml.org/doc/104197
ER -
References
top- 1. H. Bass and J. Tate, The Milnor ring of a global field, In K-theory II, Lecture Notes in Math. 342 (1973), pp. 349–446, Springer. Zbl0299.12013MR442061
- 2. A. Beilinson, Height pairing between algebraic cycles, In K-theory, Arithmetic and Geometry, Lecture Notes in Math. 1289 (1987), pp. 1–26, Springer. Zbl0651.14002MR923131
- 3. S. Bloch, Lectures on algebraic cycles, Duke Univ. Press, 1980. Zbl0436.14003MR558224
- 4. S. Bloch and S. Lichtenbaum, A spectral sequence for motivic cohomology, www.math.uiuc.edu/K-theory/062, 1994.
- 5. S. Borghesi, Algebraic Morava K-theories, Invent. Math., 151 (2) (2003), 381–413. Zbl1030.55003MR1953263
- 6. E. M. Friedlander and A. Suslin, The spectral sequence relating algebraic K-theory to motivic cohomology, Ann. Sci. École Norm. Sup. (4), 35 (6) (2002), 773–875. Zbl1047.14011MR1949356
- 7. T. Geisser and M. Levine, The K-theory of fields in characteristic p, Invent. Math., 139 (3) (2000), 459–493. Zbl0957.19003MR1738056
- 8. T. Geisser and M. Levine, The Bloch-Kato conjecture and a theorem of Suslin–Voevodsky, J. Reine Angew. Math., 530 (2001), 55–103. Zbl1023.14003MR1807268
- 9. R. Hartshorne, Algebraic Geometry, Heidelberg: Springer, 1971. Zbl0367.14001MR463157
- 10. J.-P. Jouanolou, Une suite exacte de Mayer-Vietoris en K-theorie algebrique, Lecture Notes in Math. 341 (1973), pp. 293–317. Zbl0291.14006MR409476
- 11. B. Kahn, La conjecture de Milnor (d’après V. Voevodsky), Astérisque, (245): Exp. No. 834, 5 (1997), 379–418. Séminaire Bourbaki, Vol. 1996/97. Zbl0916.19001
- 12. N. Karpenko, Characterization of minimal Pfister neighbors via Rost projectors, J. Pure Appl. Algebra, 160 (2001), 195–227. Zbl0998.11016MR1836000
- 13. K. Kato, A generalization of local class field theory by using K-groups, II, J. Fac. Sci., Univ Tokyo, 27 (1980), 603–683. Zbl0463.12006MR603953
- 14. T. Y. Lam, The algebraic theory of quadratic forms, Reading, MA: The Benjamin/Cummings Publ., 1973. Zbl0437.10006MR396410
- 15. S. Lichtenbaum, Values of zeta-functions at non-negative integers, In Number theory, Lecture Notes in Math. 1068 (1983), pp. 127–138, Springer. Zbl0591.14014MR756089
- 16. H. R. Margolis, Spectra and Steenrod algebra, North-Holland, 1983. Zbl0552.55002MR738973
- 17. V. Voevodsky, C. Mazza and C. Weibel, Lectures on motivic cohomology, I, www.math.uiuc.edu/K-theory/486, 2002.
- 18. A. Merkurjev, On the norm residue symbol of degree 2, Sov. Math. Dokl., (1981), 546–551. Zbl0496.16020
- 19. A. Merkurjev and A. Suslin, K-cohomology of Severi-Brauer varieties and the norm residue homomorphism, Math. USSR Izvestiya, 21 (1983), 307–340. Zbl0525.18008
- 20. A. Merkurjev and A. Suslin, The norm residue homomorphism of degree three, Math. USSR Izvestiya, 36(2) (1991), 349–367. Zbl0716.19002MR1062517
- 21. J. Milnor, Algebraic K-theory and quadratic forms, Invent. Math., 9 (1970), 318–344. Zbl0199.55501MR260844
- 22. J. Milnor, Introduction to Algebraic K-theory, Princeton, N.J.: Princeton Univ. Press, 1971. Zbl0237.18005MR349811
- 23. F. Morel and V. Voevodsky, A 1-homotopy theory of schemes, Publ. Math. IHES, (90) (1999), 45–143. Zbl0983.14007MR1813224
- 24. Y. Nisnevich, The completely decomposed topology on schemes and associated descent spectral sequences in algebraic K-theory, In Algebraic K-theory: connections with geometry and topology, pp. 241–342, Dordrecht: Kluwer Acad. Publ., 1989. Zbl0715.14009MR1045853
- 25. D. Orlov, A. Vishik and V. Voevodsky, An exact sequence for Milnor’s K-theory with applications to quadratic forms, www.math.uiuc.edu/K-theory/0454, 2000. Zbl1124.14017
- 26. D. C. Ravenel, Nilpotence and periodicity in stable homotopy theory, Ann. of Math. Studies 128. Princeton, 1992. Zbl0774.55001MR1192553
- 27. M. Rost, Hilbert 90 for K3 for degree-two extensions, www.math.ohio-state.edu/∼rost/K3-86.html, 1986.
- 28. M. Rost, On the spinor norm and A0(X, K1) for quadrics, www.math.ohio-state.edu/∼rost/spinor.html, 1988.
- 29. M. Rost, Some new results on the Chowgroups of quadrics, www.math.ohio-state.edu/∼rost/chowqudr.html, 1990.
- 30. M. Rost, The motive of a Pfister form, www.math.ohio-state.edu/∼rost/motive.html, 1998.
- 31. A. Suslin, Algebraic K-theory and the norm residue homomorphism, J. Soviet Math., 30 (1985), 2556–2611. Zbl0566.12016MR770942
- 32. A. Suslin, Higher Chow groups and etale cohomology, In Cycles, transfers and motivic homology theories, pp. 239–254, Princeton: Princeton Univ. Press, 2000. Zbl1019.14001MR1764203
- 33. A. Suslin and V. Voevodsky, Bloch-Kato conjecture and motivic cohomology with finite coefficients, In The arithmetic and geometry of algebraic cycles, pp. 117–189, Kluwer, 2000. Zbl1005.19001MR1744945
- 34. J. Tate, Relations between K2 and Galois cohomology, Invent. Math., 36 (1976), 257–274. Zbl0359.12011MR429837
- 35. V. Voevodsky, Bloch-Kato conjecture for Z/2-coefficients and algebraic Morava K-theories, www.math.uiuc.edu/K-theory/76, 1995.
- 36. V. Voevodsky, The Milnor Conjecture, www.math.uiuc.edu/K-theory/170, 1996.
- 37. V. Voevodsky, The A 1-homotopy theory, In Proceedings of the international congress of mathematicians, 1 (1998), pp. 579–604, Berlin. Zbl0907.19002MR1648048
- 38. V. Voevodsky, Cohomological theory of presheaves with transfers, In Cycles, transfers and motivic homology theories, Annals of Math Studies, pp. 87–137, Princeton: Princeton Univ. Press, 2000. Zbl1019.14010MR1764200
- 39. V. Voevodsky, Triangulated categories of motives over a field, In Cycles, transfers and motivic homology theories, Annals of Math Studies, pp. 188–238, Princeton: Princeton Univ. Press, 2000. Zbl1019.14009MR1764202
- 40. V. Voevodsky, Lectures on motivic cohomology 2000/2001 (written by Pierre Deligne), www.math.uiuc.edu/ K-theory /527, 2000/2001. Zbl1005.19001
- 41. V. Voevodsky, Motivic cohomology groups are isomorphic to higher Chow groups in any characteristic, Int. Math. Res. Not., (7) (2002), 351–355. Zbl1057.14026MR1883180
- 42. V. Voevodsky, Reduced power operations in motivic cohomology, Publ. Math. IHES (this volume), 2003. Zbl1057.14027MR2031198
- 43. V. Voevodsky, E. M. Friedlander and A. Suslin, Cycles, transfers and motivic homology theories, Princeton: Princeton University Press, 2000. Zbl1021.14006MR1764197
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.