Motivic cohomology with 𝐙 / 2 -coefficients

Vladimir Voevodsky

Publications Mathématiques de l'IHÉS (2003)

  • Volume: 98, page 59-104
  • ISSN: 0073-8301

How to cite

top

Voevodsky, Vladimir. "Motivic cohomology with $\mathbf {Z}/2$-coefficients." Publications Mathématiques de l'IHÉS 98 (2003): 59-104. <http://eudml.org/doc/104197>.

@article{Voevodsky2003,
author = {Voevodsky, Vladimir},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {norm residue homomorphism; Bloch-Kato conjecture; Milnor conjecture; motivic cohomology operations; Beilinson-Lichtenbaum conjectures},
language = {eng},
pages = {59-104},
publisher = {Springer},
title = {Motivic cohomology with $\mathbf \{Z\}/2$-coefficients},
url = {http://eudml.org/doc/104197},
volume = {98},
year = {2003},
}

TY - JOUR
AU - Voevodsky, Vladimir
TI - Motivic cohomology with $\mathbf {Z}/2$-coefficients
JO - Publications Mathématiques de l'IHÉS
PY - 2003
PB - Springer
VL - 98
SP - 59
EP - 104
LA - eng
KW - norm residue homomorphism; Bloch-Kato conjecture; Milnor conjecture; motivic cohomology operations; Beilinson-Lichtenbaum conjectures
UR - http://eudml.org/doc/104197
ER -

References

top
  1. 1. H. Bass and J. Tate, The Milnor ring of a global field, In K-theory II, Lecture Notes in Math. 342 (1973), pp. 349–446, Springer. Zbl0299.12013MR442061
  2. 2. A. Beilinson, Height pairing between algebraic cycles, In K-theory, Arithmetic and Geometry, Lecture Notes in Math. 1289 (1987), pp. 1–26, Springer. Zbl0651.14002MR923131
  3. 3. S. Bloch, Lectures on algebraic cycles, Duke Univ. Press, 1980. Zbl0436.14003MR558224
  4. 4. S. Bloch and S. Lichtenbaum, A spectral sequence for motivic cohomology, www.math.uiuc.edu/K-theory/062, 1994. 
  5. 5. S. Borghesi, Algebraic Morava K-theories, Invent. Math., 151 (2) (2003), 381–413. Zbl1030.55003MR1953263
  6. 6. E. M. Friedlander and A. Suslin, The spectral sequence relating algebraic K-theory to motivic cohomology, Ann. Sci. École Norm. Sup. (4), 35 (6) (2002), 773–875. Zbl1047.14011MR1949356
  7. 7. T. Geisser and M. Levine, The K-theory of fields in characteristic p, Invent. Math., 139 (3) (2000), 459–493. Zbl0957.19003MR1738056
  8. 8. T. Geisser and M. Levine, The Bloch-Kato conjecture and a theorem of Suslin–Voevodsky, J. Reine Angew. Math., 530 (2001), 55–103. Zbl1023.14003MR1807268
  9. 9. R. Hartshorne, Algebraic Geometry, Heidelberg: Springer, 1971. Zbl0367.14001MR463157
  10. 10. J.-P. Jouanolou, Une suite exacte de Mayer-Vietoris en K-theorie algebrique, Lecture Notes in Math. 341 (1973), pp. 293–317. Zbl0291.14006MR409476
  11. 11. B. Kahn, La conjecture de Milnor (d’après V. Voevodsky), Astérisque, (245): Exp. No. 834, 5 (1997), 379–418. Séminaire Bourbaki, Vol. 1996/97. Zbl0916.19001
  12. 12. N. Karpenko, Characterization of minimal Pfister neighbors via Rost projectors, J. Pure Appl. Algebra, 160 (2001), 195–227. Zbl0998.11016MR1836000
  13. 13. K. Kato, A generalization of local class field theory by using K-groups, II, J. Fac. Sci., Univ Tokyo, 27 (1980), 603–683. Zbl0463.12006MR603953
  14. 14. T. Y. Lam, The algebraic theory of quadratic forms, Reading, MA: The Benjamin/Cummings Publ., 1973. Zbl0437.10006MR396410
  15. 15. S. Lichtenbaum, Values of zeta-functions at non-negative integers, In Number theory, Lecture Notes in Math. 1068 (1983), pp. 127–138, Springer. Zbl0591.14014MR756089
  16. 16. H. R. Margolis, Spectra and Steenrod algebra, North-Holland, 1983. Zbl0552.55002MR738973
  17. 17. V. Voevodsky, C. Mazza and C. Weibel, Lectures on motivic cohomology, I, www.math.uiuc.edu/K-theory/486, 2002. 
  18. 18. A. Merkurjev, On the norm residue symbol of degree 2, Sov. Math. Dokl., (1981), 546–551. Zbl0496.16020
  19. 19. A. Merkurjev and A. Suslin, K-cohomology of Severi-Brauer varieties and the norm residue homomorphism, Math. USSR Izvestiya, 21 (1983), 307–340. Zbl0525.18008
  20. 20. A. Merkurjev and A. Suslin, The norm residue homomorphism of degree three, Math. USSR Izvestiya, 36(2) (1991), 349–367. Zbl0716.19002MR1062517
  21. 21. J. Milnor, Algebraic K-theory and quadratic forms, Invent. Math., 9 (1970), 318–344. Zbl0199.55501MR260844
  22. 22. J. Milnor, Introduction to Algebraic K-theory, Princeton, N.J.: Princeton Univ. Press, 1971. Zbl0237.18005MR349811
  23. 23. F. Morel and V. Voevodsky, A 1-homotopy theory of schemes, Publ. Math. IHES, (90) (1999), 45–143. Zbl0983.14007MR1813224
  24. 24. Y. Nisnevich, The completely decomposed topology on schemes and associated descent spectral sequences in algebraic K-theory, In Algebraic K-theory: connections with geometry and topology, pp. 241–342, Dordrecht: Kluwer Acad. Publ., 1989. Zbl0715.14009MR1045853
  25. 25. D. Orlov, A. Vishik and V. Voevodsky, An exact sequence for Milnor’s K-theory with applications to quadratic forms, www.math.uiuc.edu/K-theory/0454, 2000. Zbl1124.14017
  26. 26. D. C. Ravenel, Nilpotence and periodicity in stable homotopy theory, Ann. of Math. Studies 128. Princeton, 1992. Zbl0774.55001MR1192553
  27. 27. M. Rost, Hilbert 90 for K3 for degree-two extensions, www.math.ohio-state.edu/∼rost/K3-86.html, 1986. 
  28. 28. M. Rost, On the spinor norm and A0(X, K1) for quadrics, www.math.ohio-state.edu/∼rost/spinor.html, 1988. 
  29. 29. M. Rost, Some new results on the Chowgroups of quadrics, www.math.ohio-state.edu/∼rost/chowqudr.html, 1990. 
  30. 30. M. Rost, The motive of a Pfister form, www.math.ohio-state.edu/∼rost/motive.html, 1998. 
  31. 31. A. Suslin, Algebraic K-theory and the norm residue homomorphism, J. Soviet Math., 30 (1985), 2556–2611. Zbl0566.12016MR770942
  32. 32. A. Suslin, Higher Chow groups and etale cohomology, In Cycles, transfers and motivic homology theories, pp. 239–254, Princeton: Princeton Univ. Press, 2000. Zbl1019.14001MR1764203
  33. 33. A. Suslin and V. Voevodsky, Bloch-Kato conjecture and motivic cohomology with finite coefficients, In The arithmetic and geometry of algebraic cycles, pp. 117–189, Kluwer, 2000. Zbl1005.19001MR1744945
  34. 34. J. Tate, Relations between K2 and Galois cohomology, Invent. Math., 36 (1976), 257–274. Zbl0359.12011MR429837
  35. 35. V. Voevodsky, Bloch-Kato conjecture for Z/2-coefficients and algebraic Morava K-theories, www.math.uiuc.edu/K-theory/76, 1995. 
  36. 36. V. Voevodsky, The Milnor Conjecture, www.math.uiuc.edu/K-theory/170, 1996. 
  37. 37. V. Voevodsky, The A 1-homotopy theory, In Proceedings of the international congress of mathematicians, 1 (1998), pp. 579–604, Berlin. Zbl0907.19002MR1648048
  38. 38. V. Voevodsky, Cohomological theory of presheaves with transfers, In Cycles, transfers and motivic homology theories, Annals of Math Studies, pp. 87–137, Princeton: Princeton Univ. Press, 2000. Zbl1019.14010MR1764200
  39. 39. V. Voevodsky, Triangulated categories of motives over a field, In Cycles, transfers and motivic homology theories, Annals of Math Studies, pp. 188–238, Princeton: Princeton Univ. Press, 2000. Zbl1019.14009MR1764202
  40. 40. V. Voevodsky, Lectures on motivic cohomology 2000/2001 (written by Pierre Deligne), www.math.uiuc.edu/ K-theory /527, 2000/2001. Zbl1005.19001
  41. 41. V. Voevodsky, Motivic cohomology groups are isomorphic to higher Chow groups in any characteristic, Int. Math. Res. Not., (7) (2002), 351–355. Zbl1057.14026MR1883180
  42. 42. V. Voevodsky, Reduced power operations in motivic cohomology, Publ. Math. IHES (this volume), 2003. Zbl1057.14027MR2031198
  43. 43. V. Voevodsky, E. M. Friedlander and A. Suslin, Cycles, transfers and motivic homology theories, Princeton: Princeton University Press, 2000. Zbl1021.14006MR1764197

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.