Moduli spaces of local systems and higher Teichmüller theory
Vladimir Fock; Alexander Goncharov
Publications Mathématiques de l'IHÉS (2006)
- Volume: 103, page 1-211
- ISSN: 0073-8301
Access Full Article
topAbstract
topHow to cite
topFock, Vladimir, and Goncharov, Alexander. "Moduli spaces of local systems and higher Teichmüller theory." Publications Mathématiques de l'IHÉS 103 (2006): 1-211. <http://eudml.org/doc/104216>.
@article{Fock2006,
abstract = {Let G be a split semisimple algebraic group over Q with trivial center. Let S be a compact oriented surface, with or without boundary. We define positive representations of the fundamental group of S to G(R), construct explicitly all positive representations, and prove that they are faithful, discrete, and positive hyperbolic; the moduli space of positive representations is a topologically trivial open domain in the space of all representations. When S have holes, we defined two moduli spaces closely related to the moduli spaces of G-local systems on S. We show that they carry a lot of interesting structures. In particular we define a distinguished collection of coordinate systems, equivariant under the action of the mapping class group of S. We prove that their transition functions are subtraction free. Thus we have positive structures on these moduli spaces. Therefore we can take their points with values in any positive semifield. Their positive real points provide the two higher Teichmüller spaces related to G and S, while the points with values in the tropical semifields provide the lamination spaces. We define the motivic avatar of the Weil–Petersson form for one of these spaces. It is related to the motivic dilogarithm.},
author = {Fock, Vladimir, Goncharov, Alexander},
journal = {Publications Mathématiques de l'IHÉS},
language = {eng},
pages = {1-211},
publisher = {Springer},
title = {Moduli spaces of local systems and higher Teichmüller theory},
url = {http://eudml.org/doc/104216},
volume = {103},
year = {2006},
}
TY - JOUR
AU - Fock, Vladimir
AU - Goncharov, Alexander
TI - Moduli spaces of local systems and higher Teichmüller theory
JO - Publications Mathématiques de l'IHÉS
PY - 2006
PB - Springer
VL - 103
SP - 1
EP - 211
AB - Let G be a split semisimple algebraic group over Q with trivial center. Let S be a compact oriented surface, with or without boundary. We define positive representations of the fundamental group of S to G(R), construct explicitly all positive representations, and prove that they are faithful, discrete, and positive hyperbolic; the moduli space of positive representations is a topologically trivial open domain in the space of all representations. When S have holes, we defined two moduli spaces closely related to the moduli spaces of G-local systems on S. We show that they carry a lot of interesting structures. In particular we define a distinguished collection of coordinate systems, equivariant under the action of the mapping class group of S. We prove that their transition functions are subtraction free. Thus we have positive structures on these moduli spaces. Therefore we can take their points with values in any positive semifield. Their positive real points provide the two higher Teichmüller spaces related to G and S, while the points with values in the tropical semifields provide the lamination spaces. We define the motivic avatar of the Weil–Petersson form for one of these spaces. It is related to the motivic dilogarithm.
LA - eng
UR - http://eudml.org/doc/104216
ER -
References
top- 1. I. Biswas, P. Ares-Gastesi and S. Govindarajan, Parabolic Higgs bundles and Teichmüller spaces for punctured surfaces, Trans. Amer. Math. Soc., 349 (1997), no. 4, 1551–1560, alg-geom/9510011. Zbl0964.32011MR1407481
- 2. A. A. Beilinson and V. G. Drinfeld, Opers, math.AG/0501398.
- 3. A. Berenstein and D. Kazhdan, Geometric and unipotent crystals, Geom. Funct. Anal., Special volume, part II (2000), 188–236. Zbl1044.17006MR1826254
- 4. A. Berenstein and A. Zelevinsky, Tensor product multiplicities, canonical bases and totally positive algebras, Invent. Math., 143 (2001), no. 1, 77–128, math.RT/9912012. Zbl1061.17006MR1802793
- 5. A. Berenstein, S. Fomin and A. Zelevinsky, Parametrizations of canonical bases and totally positive matrices, Adv. Math., 122 (1996), no. 1, 49–149. Zbl0966.17011MR1405449
- 6. A. Berenstein, S. Fomin and A. Zelevinsky, Cluster algebras. III: Upper bounds and double Bruhat cells, Duke Math. J., 126 (2005), no. 1, 1–52, math.RT/0305434. Zbl1135.16013MR2110627
- 7. L. Bers, Universal Teichmüller space, Analytic Methods in Mathematical Physics (Sympos., Indiana Univ., Bloomington, Ind., 1968), pp. 65–83, Gordon and Breach (1970). Zbl0213.35701MR349988
- 8. L. Bers, On the boundaries of Teichmüller spaces and on Kleinian groups, Ann. Math., 91 (1970), 670–600. Zbl0197.06001MR297992
- 9. F. Bonahon, The geometry of Teichmüller space via geodesic currents, Invent. Math., 92 (1988), no. 1, 139–162. Zbl0653.32022MR931208
- 10. N. Bourbaki, Lie groups and Lie algebras, Chapters 4–6, translated from the 1968 French original by A. Pressley, Elements of Mathematics (Berlin), Springer, Berlin (2002). Zbl0983.17001MR1890629
- 11. M. Borovoi, Abelianization of the second nonabelian Galois cohomology, Duke Math. J., 72 (1993), 217–239. Zbl0849.12011MR1242885
- 12. J.-J Brylinsky and P. Deligne, Central extensions of reductive groups by K2, Publ. Math., Inst. Hautes Étud. Sci., 94 (2001), 5–85. Zbl1093.20027MR1896177
- 13. N. Chriss and V. Ginzburg, Representation Theory and Complex Geometry, Birkhäuser Boston, Inc., Boston, MA (1997). Zbl0879.22001MR1433132
- 14. L. O. Chekhov and V. V. Fock, Quantum Teichmüller spaces, Teor. Mat. Fiz., 120 (1999), no. 3, 511–528, math.QA/9908165. Zbl0986.32007MR1737362
- 15. K. Corlette, Flat G-bundles with canonical metrics, J. Differ. Geom., 28 (1988), 361–382. Zbl0676.58007MR965220
- 16. P. Deligne, Équations différentielles à points singuliers réguliers, Springer Lect. Notes Math., vol. 163 (1970). Zbl0244.14004MR417174
- 17. V. G. Drinfeld and V. V. Sokolov, Lie algebras and equations of Korteweg-de Vries type, Curr. Probl. Math., 24 (1984), 81–180, in Russian. Zbl0558.58027MR760998
- 18. S. Donaldson, Twisted harmonic maps and the self-duality equations, Proc. Lond. Math. Soc., 55 (1987), 127–131. Zbl0634.53046MR887285
- 19. H. Esnault, B. Kahn, M. Levine and E. Viehweg, The Arason invariant and mod 2 algebraic cycles, J. Amer. Math. Soc., 11 (1998), no. 1, 73–118. Zbl1025.11009MR1460391
- 20. V. V. Fock, Dual Teichmüller spaces, dg-ga/9702018.
- 21. V. V. Fock and A. A. Rosly, Poisson structure on moduli of flat connections on Riemann surfaces and r-matrix, Transl., Ser. 2, Amer. Math. Soc., 191 (1999), 67–86, math.QA/9802054. Zbl0945.53050MR1730456
- 22. V. V. Fock and A. B. Goncharov, Cluster ensembles, quantization and the dilogarithm, math.AG/0311245. Zbl1225.53070
- 23. V. V. Fock and A. B. Goncharov, Moduli spaces of convex projective structures on surfaces, to appear in Adv. Math. (2006), math.AG/0405348. Zbl1111.32013MR2304317
- 24. V. V. Fock and A. B. Goncharov, Dual Teichmüller and lamination spaces, to appear in the Handbook on Teichmüller theory, math.AG/0510312. Zbl1162.32009MR2349682
- 25. V. V. Fock and A. B. Goncharov, Cluster -Varieties, Amalganations, and Poisson-Lie Groups, Progr. Math., Birkhäuser, volume dedicated to V. G. Drinfeld, math.RT/0508408. Zbl1162.22014MR2263192
- 26. V. V. Fock and A. B. Goncharov, to appear.
- 27. S. Fomin and A. Zelevinsky, Double Bruhat cells and total positivity, J. Amer. Math. Soc., 12 (1999), no. 2, 335–380, math.RA/9912128. Zbl0913.22011MR1652878
- 28. S. Fomin and A. Zelevinsky, Cluster algebras, I, J. Amer. Math. Soc., 15 (2002), no. 2, 497–529, math.RT/0104151. Zbl1021.16017MR1887642
- 29. S. Fomin and A. Zelevinsky, Cluster algebras, II: Finite type classification, Invent. Math., 154 (2003), no. 1, 63–121, math.RA/0208229. Zbl1054.17024MR2004457
- 30. S. Fomin and A. Zelevinsky, The Laurent phenomenon. Adv. Appl. Math., 28 (2002), no. 2, 119–144, math.CO/0104241. Zbl1012.05012MR1888840
- 31. A. M. Gabrielov, I. M. Gelfand and M. V. Losik, Combinatorial computation of characteristic classes, I, II. (Russian), Funkts. Anal. Prilozh., 9 (1975), no. 2, 12–28; no. 3, 5–26. Zbl0312.57016MR410758
- 32. F. R. Gantmacher and M. G. Krein, Oscillation Matrices and Kernels and Small Vibrations of Mechanical Systems, revised edition of the 1941 Russian original. Zbl1002.74002
- 33. F. R. Gantmacher, M. G. Krein, Sur les Matrices Oscillatores, C.R. Acad. Sci. Paris, 201 (1935), AMS Chelsea Publ., Providence, RI (2002). Zbl0012.28903
- 34. M. Gekhtman, M. Shapiro and A. Vainshtein, Cluster algebras and Poisson geometry, Mosc. Math. J., 3 (2003), no. 3, 899–934, math.QA/0208033. Zbl1057.53064MR2078567
- 35. M. Gekhtman, M. Shapiro and A. Vainshtein, Cluster algebras and Weil–Petersson forms, Duke Math. J., 127 (2005), no. 2, 291–311, math.QA/0309138. Zbl1079.53124MR2130414
- 36. O. Guichard, Sur les répresentations de groupes de surface, preprint. Zbl27.0536.02
- 37. W. Goldman, The symplectic nature of fundamental groups of surfaces, Adv. Math., 54 (1984), no. 2, 200–225. Zbl0574.32032MR762512
- 38. W. Goldman, Convex real projective structures on compact surfaces, J. Differ. Geom., 31 (1990), 126–159. Zbl0711.53033MR1053346
- 39. A. B. Goncharov, Geometry of configurations, polylogarithms, and motivic cohomology, Adv. Math., 114 (1995), no. 2, 197–318. Zbl0863.19004MR1348706
- 40. A. B. Goncharov, Polylogarithms and motivic Galois groups, Motives (Seattle, WA, 1991), Proc. Sympos. Pure Math., vol. 55, part 2, pp. 43–96, Amer. Math. Soc., Providence, RI (1994). Zbl0842.11043MR1265551
- 41. A. B. Goncharov, Explicit Construction of Characteristic Classes, I, M. Gelfand Seminar, Adv. Soviet Math., vol. 16, part 1, pp. 169–210, Amer. Math. Soc., Providence, RI (1993). Zbl0809.57016MR1237830
- 42. A. B. Goncharov, Deninger’s conjecture of L-functions of elliptic curves at s=3. Algebraic geometry, 4. J. Math. Sci., 81 (1996), no. 3, 2631–2656, alg-geom/9512016. Zbl0867.11048
- 43. A. B. Goncharov, Polylogarithms, regulators and Arakelov motivic complexes, J. Amer. Math. Soc., 18 (2005), no. 1, 1–6; math.AG/0207036. Zbl1104.11036MR2114816
- 44. A. B. Goncharov and Yu. I. Manin, Multiple ζ-motives and moduli spaces ℳ0,n , Compos. Math., 140 (2004), no. 1, 1–14, math.AG/0204102. Zbl1047.11063
- 45. J. Harer, The virtual cohomological dimension of the mapping class group of an orientable surface, Invent. Math., 84 (1986), no. 1, 157–176. Zbl0592.57009MR830043
- 46. N. J. Hitchin, Lie groups and Teichmüller space, Topology, 31 (1992), no. 3, 449–473. Zbl0769.32008MR1174252
- 47. N. J. Hitchin, The self-duality equation on a Riemann surface, Proc. Lond. Math. Soc., 55 (1987), 59–126. Zbl0634.53045MR887284
- 48. R. M. Kashaev, Quantization of Teichmüller spaces and the quantum dilogarithm, Lett. Math. Phys., 43 (1998), no. 2, 105–115. Zbl0897.57014MR1607296
- 49. I. Kra, Deformation spaces, A Crash Course on Kleinian Groups (Lectures at a Special Session, Annual Winter Meeting, Amer. Math. Soc., San Francisco, Calif., 1974), Lect. Notes Math., vol. 400, pp. 48–70, Springer, Berlin (1974). Zbl0293.32021MR402122
- 50. M. Kontsevich, Formal (non)commutative symplectic geometry, The Gelfand Mathematical Seminars 1990–1992, Birkhäuser Boston, Boston, MA (1993), 173–187. Zbl0821.58018MR1247289
- 51. F. Labourie, Anosov flows, surface groups and curves in projective spaces, preprint, Dec. 8 (2003). Zbl1103.32007MR2221137
- 52. G. Lusztig, Total positivity in reductive groups, Lie Theory and Geometry, Progr. Math., vol. 123, pp. 531–568, Birkhäuser Boston, Boston, MA (1994). Zbl0845.20034MR1327548
- 53. G. Lusztig, Total positivity and canonical bases, Algebraic Groups and Lie Groups, Austral. Math. Soc. Lect. Ser., vol. 9, pp. 281–295, Cambridge Univ. Press, Cambridge (1997). Zbl0890.20034MR1635687
- 54. C. McMullen, Iteration on Teichmüller space, Invent. Math., 99 (1990), no. 2, 425–454. Zbl0695.57012MR1031909
- 55. J. Milnor, Introduction to algebraic K-theory, Annals of Mathematics Studies, no. 72. Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo (1971). Zbl0237.18005MR349811
- 56. I. Nikolaev and E. Zhuzhoma, Flows on 2-dimensional manifolds, Springer Lect. Notes Math., vol. 1705 (1999). Zbl1022.37027MR1707298
- 57. R. C. Penner, The decorated Teichmüller space of punctured surfaces, Commun. Math. Phys., 113 (1987), no. 2, 299–339. Zbl0642.32012MR919235
- 58. R. C. Penner, Weil–Petersson volumes, J. Differ. Geom., 35 (1992), no. 3, 559–608. Zbl0768.32016MR1163449
- 59. R. C. Penner, Universal constructions in Teichmüller theory, Adv. Math., 98 (1993), no. 2, 143–215. Zbl0772.30040MR1213724
- 60. R. C. Penner, The universal Ptolemy group and its completions, Geometric Galois Actions, 2, 293–312, Lond. Math. Soc. Lect. Note Ser., 243, Cambridge Univ. Press (1997). Zbl0983.32019MR1653016
- 61. R. C. Penner and J. L. Harer, Combinatorics of train tracks, Ann. Math. Studies, 125, Princeton University Press, Princeton, NJ (1992). Zbl0765.57001MR1144770
- 62. I. J. Schoenberg, Convex domains and linear combinations of continuous functions, Bull. Amer. Math. Soc., 39 (1933), 273–280. Zbl0007.10801MR1562598
- 63. I. J. Schoenberg, Über variationsvermindernde lineare Transformationen, Math. Z., 32 (1930), 321–322. Zbl56.0106.06MR1545169JFM56.0106.06
- 64. C. Simpson, Constructing variations of Hodge structures using Yang–Mills theory and applications to uniformization, J. Amer. Math. Soc., 1 (1988), 867–918. Zbl0669.58008MR944577
- 65. J.-P. Serre, Cohomologie Galoisienne (French), with a contribution by J.-L. Verdier, Lect. Notes Math., no. 5, 3rd edn., v+212pp., Springer, Berlin, New York (1965). Zbl0136.02801MR201444
- 66. K. Strebel, Quadratic Differentials, Springer, Berlin, Heidelberg, New York (1984). Zbl0547.30001MR743423
- 67. P. Sherman and A. Zelevinsky, Positivity and canonical bases in rank 2 cluster algebras of finite and affine types, Mosc. Math. J., 4 (2004), no. 4, 947–974, math.RT/0307082. Zbl1103.16018MR2124174
- 68. A. A. Suslin, Homology of GLn , characteristic classes and Milnor K-theory, Algebraic Geometry and its Applications, Tr. Mat. Inst. Steklova, 165 (1984), 188–204. Zbl0591.18006MR752941
- 69. W. Thurston, The geometry and topology of three-manifolds, Princeton University Notes, http://www.msri.org/publications/books/gt3m.
- 70. A. M. Whitney, A reduction theorem for totally positive matrices, J. Anal. Math., 2 (1952), 88–92. Zbl0049.17104MR53173
- 71. S. Wolpert, Geometry of the Weil–Petersson completion of the Teichmüller space, Surv. Differ. Geom., Suppl. J. Differ. Geom., VIII (2002), 357–393. Zbl1049.32020MR2039996
Citations in EuDML Documents
top- Vladimir V. Fock, Alexander B. Goncharov, Cluster ensembles, quantization and the dilogarithm
- Sophie Morier-Genoud, Valentin Ovsienko, Serge Tabachnikov, 2-frieze patterns and the cluster structure of the space of polygons
- François Labourie, Cross ratios, surface groups, and diffeomorphisms of the circle
- Alexander B. Goncharov, Richard Kenyon, Dimers and cluster integrable systems
- François Labourie, Cross ratios, Anosov representations and the energy functional on Teichmüller space
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.