Moduli spaces of local systems and higher Teichmüller theory

Vladimir Fock; Alexander Goncharov

Publications Mathématiques de l'IHÉS (2006)

  • Volume: 103, page 1-211
  • ISSN: 0073-8301

Abstract

top
Let G be a split semisimple algebraic group over Q with trivial center. Let S be a compact oriented surface, with or without boundary. We define positive representations of the fundamental group of S to G(R), construct explicitly all positive representations, and prove that they are faithful, discrete, and positive hyperbolic; the moduli space of positive representations is a topologically trivial open domain in the space of all representations. When S have holes, we defined two moduli spaces closely related to the moduli spaces of G-local systems on S. We show that they carry a lot of interesting structures. In particular we define a distinguished collection of coordinate systems, equivariant under the action of the mapping class group of S. We prove that their transition functions are subtraction free. Thus we have positive structures on these moduli spaces. Therefore we can take their points with values in any positive semifield. Their positive real points provide the two higher Teichmüller spaces related to G and S, while the points with values in the tropical semifields provide the lamination spaces. We define the motivic avatar of the Weil–Petersson form for one of these spaces. It is related to the motivic dilogarithm.

How to cite

top

Fock, Vladimir, and Goncharov, Alexander. "Moduli spaces of local systems and higher Teichmüller theory." Publications Mathématiques de l'IHÉS 103 (2006): 1-211. <http://eudml.org/doc/104216>.

@article{Fock2006,
abstract = {Let G be a split semisimple algebraic group over Q with trivial center. Let S be a compact oriented surface, with or without boundary. We define positive representations of the fundamental group of S to G(R), construct explicitly all positive representations, and prove that they are faithful, discrete, and positive hyperbolic; the moduli space of positive representations is a topologically trivial open domain in the space of all representations. When S have holes, we defined two moduli spaces closely related to the moduli spaces of G-local systems on S. We show that they carry a lot of interesting structures. In particular we define a distinguished collection of coordinate systems, equivariant under the action of the mapping class group of S. We prove that their transition functions are subtraction free. Thus we have positive structures on these moduli spaces. Therefore we can take their points with values in any positive semifield. Their positive real points provide the two higher Teichmüller spaces related to G and S, while the points with values in the tropical semifields provide the lamination spaces. We define the motivic avatar of the Weil–Petersson form for one of these spaces. It is related to the motivic dilogarithm.},
author = {Fock, Vladimir, Goncharov, Alexander},
journal = {Publications Mathématiques de l'IHÉS},
language = {eng},
pages = {1-211},
publisher = {Springer},
title = {Moduli spaces of local systems and higher Teichmüller theory},
url = {http://eudml.org/doc/104216},
volume = {103},
year = {2006},
}

TY - JOUR
AU - Fock, Vladimir
AU - Goncharov, Alexander
TI - Moduli spaces of local systems and higher Teichmüller theory
JO - Publications Mathématiques de l'IHÉS
PY - 2006
PB - Springer
VL - 103
SP - 1
EP - 211
AB - Let G be a split semisimple algebraic group over Q with trivial center. Let S be a compact oriented surface, with or without boundary. We define positive representations of the fundamental group of S to G(R), construct explicitly all positive representations, and prove that they are faithful, discrete, and positive hyperbolic; the moduli space of positive representations is a topologically trivial open domain in the space of all representations. When S have holes, we defined two moduli spaces closely related to the moduli spaces of G-local systems on S. We show that they carry a lot of interesting structures. In particular we define a distinguished collection of coordinate systems, equivariant under the action of the mapping class group of S. We prove that their transition functions are subtraction free. Thus we have positive structures on these moduli spaces. Therefore we can take their points with values in any positive semifield. Their positive real points provide the two higher Teichmüller spaces related to G and S, while the points with values in the tropical semifields provide the lamination spaces. We define the motivic avatar of the Weil–Petersson form for one of these spaces. It is related to the motivic dilogarithm.
LA - eng
UR - http://eudml.org/doc/104216
ER -

References

top
  1. 1. I. Biswas, P. Ares-Gastesi and S. Govindarajan, Parabolic Higgs bundles and Teichmüller spaces for punctured surfaces, Trans. Amer. Math. Soc., 349 (1997), no. 4, 1551–1560, alg-geom/9510011. Zbl0964.32011MR1407481
  2. 2. A. A. Beilinson and V. G. Drinfeld, Opers, math.AG/0501398. 
  3. 3. A. Berenstein and D. Kazhdan, Geometric and unipotent crystals, Geom. Funct. Anal., Special volume, part II (2000), 188–236. Zbl1044.17006MR1826254
  4. 4. A. Berenstein and A. Zelevinsky, Tensor product multiplicities, canonical bases and totally positive algebras, Invent. Math., 143 (2001), no. 1, 77–128, math.RT/9912012. Zbl1061.17006MR1802793
  5. 5. A. Berenstein, S. Fomin and A. Zelevinsky, Parametrizations of canonical bases and totally positive matrices, Adv. Math., 122 (1996), no. 1, 49–149. Zbl0966.17011MR1405449
  6. 6. A. Berenstein, S. Fomin and A. Zelevinsky, Cluster algebras. III: Upper bounds and double Bruhat cells, Duke Math. J., 126 (2005), no. 1, 1–52, math.RT/0305434. Zbl1135.16013MR2110627
  7. 7. L. Bers, Universal Teichmüller space, Analytic Methods in Mathematical Physics (Sympos., Indiana Univ., Bloomington, Ind., 1968), pp. 65–83, Gordon and Breach (1970). Zbl0213.35701MR349988
  8. 8. L. Bers, On the boundaries of Teichmüller spaces and on Kleinian groups, Ann. Math., 91 (1970), 670–600. Zbl0197.06001MR297992
  9. 9. F. Bonahon, The geometry of Teichmüller space via geodesic currents, Invent. Math., 92 (1988), no. 1, 139–162. Zbl0653.32022MR931208
  10. 10. N. Bourbaki, Lie groups and Lie algebras, Chapters 4–6, translated from the 1968 French original by A. Pressley, Elements of Mathematics (Berlin), Springer, Berlin (2002). Zbl0983.17001MR1890629
  11. 11. M. Borovoi, Abelianization of the second nonabelian Galois cohomology, Duke Math. J., 72 (1993), 217–239. Zbl0849.12011MR1242885
  12. 12. J.-J Brylinsky and P. Deligne, Central extensions of reductive groups by K2, Publ. Math., Inst. Hautes Étud. Sci., 94 (2001), 5–85. Zbl1093.20027MR1896177
  13. 13. N. Chriss and V. Ginzburg, Representation Theory and Complex Geometry, Birkhäuser Boston, Inc., Boston, MA (1997). Zbl0879.22001MR1433132
  14. 14. L. O. Chekhov and V. V. Fock, Quantum Teichmüller spaces, Teor. Mat. Fiz., 120 (1999), no. 3, 511–528, math.QA/9908165. Zbl0986.32007MR1737362
  15. 15. K. Corlette, Flat G-bundles with canonical metrics, J. Differ. Geom., 28 (1988), 361–382. Zbl0676.58007MR965220
  16. 16. P. Deligne, Équations différentielles à points singuliers réguliers, Springer Lect. Notes Math., vol. 163 (1970). Zbl0244.14004MR417174
  17. 17. V. G. Drinfeld and V. V. Sokolov, Lie algebras and equations of Korteweg-de Vries type, Curr. Probl. Math., 24 (1984), 81–180, in Russian. Zbl0558.58027MR760998
  18. 18. S. Donaldson, Twisted harmonic maps and the self-duality equations, Proc. Lond. Math. Soc., 55 (1987), 127–131. Zbl0634.53046MR887285
  19. 19. H. Esnault, B. Kahn, M. Levine and E. Viehweg, The Arason invariant and mod 2 algebraic cycles, J. Amer. Math. Soc., 11 (1998), no. 1, 73–118. Zbl1025.11009MR1460391
  20. 20. V. V. Fock, Dual Teichmüller spaces, dg-ga/9702018. 
  21. 21. V. V. Fock and A. A. Rosly, Poisson structure on moduli of flat connections on Riemann surfaces and r-matrix, Transl., Ser. 2, Amer. Math. Soc., 191 (1999), 67–86, math.QA/9802054. Zbl0945.53050MR1730456
  22. 22. V. V. Fock and A. B. Goncharov, Cluster ensembles, quantization and the dilogarithm, math.AG/0311245. Zbl1225.53070
  23. 23. V. V. Fock and A. B. Goncharov, Moduli spaces of convex projective structures on surfaces, to appear in Adv. Math. (2006), math.AG/0405348. Zbl1111.32013MR2304317
  24. 24. V. V. Fock and A. B. Goncharov, Dual Teichmüller and lamination spaces, to appear in the Handbook on Teichmüller theory, math.AG/0510312. Zbl1162.32009MR2349682
  25. 25. V. V. Fock and A. B. Goncharov, Cluster 𝒳 -Varieties, Amalganations, and Poisson-Lie Groups, Progr. Math., Birkhäuser, volume dedicated to V. G. Drinfeld, math.RT/0508408. Zbl1162.22014MR2263192
  26. 26. V. V. Fock and A. B. Goncharov, to appear. 
  27. 27. S. Fomin and A. Zelevinsky, Double Bruhat cells and total positivity, J. Amer. Math. Soc., 12 (1999), no. 2, 335–380, math.RA/9912128. Zbl0913.22011MR1652878
  28. 28. S. Fomin and A. Zelevinsky, Cluster algebras, I, J. Amer. Math. Soc., 15 (2002), no. 2, 497–529, math.RT/0104151. Zbl1021.16017MR1887642
  29. 29. S. Fomin and A. Zelevinsky, Cluster algebras, II: Finite type classification, Invent. Math., 154 (2003), no. 1, 63–121, math.RA/0208229. Zbl1054.17024MR2004457
  30. 30. S. Fomin and A. Zelevinsky, The Laurent phenomenon. Adv. Appl. Math., 28 (2002), no. 2, 119–144, math.CO/0104241. Zbl1012.05012MR1888840
  31. 31. A. M. Gabrielov, I. M. Gelfand and M. V. Losik, Combinatorial computation of characteristic classes, I, II. (Russian), Funkts. Anal. Prilozh., 9 (1975), no. 2, 12–28; no. 3, 5–26. Zbl0312.57016MR410758
  32. 32. F. R. Gantmacher and M. G. Krein, Oscillation Matrices and Kernels and Small Vibrations of Mechanical Systems, revised edition of the 1941 Russian original. Zbl1002.74002
  33. 33. F. R. Gantmacher, M. G. Krein, Sur les Matrices Oscillatores, C.R. Acad. Sci. Paris, 201 (1935), AMS Chelsea Publ., Providence, RI (2002). Zbl0012.28903
  34. 34. M. Gekhtman, M. Shapiro and A. Vainshtein, Cluster algebras and Poisson geometry, Mosc. Math. J., 3 (2003), no. 3, 899–934, math.QA/0208033. Zbl1057.53064MR2078567
  35. 35. M. Gekhtman, M. Shapiro and A. Vainshtein, Cluster algebras and Weil–Petersson forms, Duke Math. J., 127 (2005), no. 2, 291–311, math.QA/0309138. Zbl1079.53124MR2130414
  36. 36. O. Guichard, Sur les répresentations de groupes de surface, preprint. Zbl27.0536.02
  37. 37. W. Goldman, The symplectic nature of fundamental groups of surfaces, Adv. Math., 54 (1984), no. 2, 200–225. Zbl0574.32032MR762512
  38. 38. W. Goldman, Convex real projective structures on compact surfaces, J. Differ. Geom., 31 (1990), 126–159. Zbl0711.53033MR1053346
  39. 39. A. B. Goncharov, Geometry of configurations, polylogarithms, and motivic cohomology, Adv. Math., 114 (1995), no. 2, 197–318. Zbl0863.19004MR1348706
  40. 40. A. B. Goncharov, Polylogarithms and motivic Galois groups, Motives (Seattle, WA, 1991), Proc. Sympos. Pure Math., vol. 55, part 2, pp. 43–96, Amer. Math. Soc., Providence, RI (1994). Zbl0842.11043MR1265551
  41. 41. A. B. Goncharov, Explicit Construction of Characteristic Classes, I, M. Gelfand Seminar, Adv. Soviet Math., vol. 16, part 1, pp. 169–210, Amer. Math. Soc., Providence, RI (1993). Zbl0809.57016MR1237830
  42. 42. A. B. Goncharov, Deninger’s conjecture of L-functions of elliptic curves at s=3. Algebraic geometry, 4. J. Math. Sci., 81 (1996), no. 3, 2631–2656, alg-geom/9512016. Zbl0867.11048
  43. 43. A. B. Goncharov, Polylogarithms, regulators and Arakelov motivic complexes, J. Amer. Math. Soc., 18 (2005), no. 1, 1–6; math.AG/0207036. Zbl1104.11036MR2114816
  44. 44. A. B. Goncharov and Yu. I. Manin, Multiple ζ-motives and moduli spaces ℳ0,n , Compos. Math., 140 (2004), no. 1, 1–14, math.AG/0204102. Zbl1047.11063
  45. 45. J. Harer, The virtual cohomological dimension of the mapping class group of an orientable surface, Invent. Math., 84 (1986), no. 1, 157–176. Zbl0592.57009MR830043
  46. 46. N. J. Hitchin, Lie groups and Teichmüller space, Topology, 31 (1992), no. 3, 449–473. Zbl0769.32008MR1174252
  47. 47. N. J. Hitchin, The self-duality equation on a Riemann surface, Proc. Lond. Math. Soc., 55 (1987), 59–126. Zbl0634.53045MR887284
  48. 48. R. M. Kashaev, Quantization of Teichmüller spaces and the quantum dilogarithm, Lett. Math. Phys., 43 (1998), no. 2, 105–115. Zbl0897.57014MR1607296
  49. 49. I. Kra, Deformation spaces, A Crash Course on Kleinian Groups (Lectures at a Special Session, Annual Winter Meeting, Amer. Math. Soc., San Francisco, Calif., 1974), Lect. Notes Math., vol. 400, pp. 48–70, Springer, Berlin (1974). Zbl0293.32021MR402122
  50. 50. M. Kontsevich, Formal (non)commutative symplectic geometry, The Gelfand Mathematical Seminars 1990–1992, Birkhäuser Boston, Boston, MA (1993), 173–187. Zbl0821.58018MR1247289
  51. 51. F. Labourie, Anosov flows, surface groups and curves in projective spaces, preprint, Dec. 8 (2003). Zbl1103.32007MR2221137
  52. 52. G. Lusztig, Total positivity in reductive groups, Lie Theory and Geometry, Progr. Math., vol. 123, pp. 531–568, Birkhäuser Boston, Boston, MA (1994). Zbl0845.20034MR1327548
  53. 53. G. Lusztig, Total positivity and canonical bases, Algebraic Groups and Lie Groups, Austral. Math. Soc. Lect. Ser., vol. 9, pp. 281–295, Cambridge Univ. Press, Cambridge (1997). Zbl0890.20034MR1635687
  54. 54. C. McMullen, Iteration on Teichmüller space, Invent. Math., 99 (1990), no. 2, 425–454. Zbl0695.57012MR1031909
  55. 55. J. Milnor, Introduction to algebraic K-theory, Annals of Mathematics Studies, no. 72. Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo (1971). Zbl0237.18005MR349811
  56. 56. I. Nikolaev and E. Zhuzhoma, Flows on 2-dimensional manifolds, Springer Lect. Notes Math., vol. 1705 (1999). Zbl1022.37027MR1707298
  57. 57. R. C. Penner, The decorated Teichmüller space of punctured surfaces, Commun. Math. Phys., 113 (1987), no. 2, 299–339. Zbl0642.32012MR919235
  58. 58. R. C. Penner, Weil–Petersson volumes, J. Differ. Geom., 35 (1992), no. 3, 559–608. Zbl0768.32016MR1163449
  59. 59. R. C. Penner, Universal constructions in Teichmüller theory, Adv. Math., 98 (1993), no. 2, 143–215. Zbl0772.30040MR1213724
  60. 60. R. C. Penner, The universal Ptolemy group and its completions, Geometric Galois Actions, 2, 293–312, Lond. Math. Soc. Lect. Note Ser., 243, Cambridge Univ. Press (1997). Zbl0983.32019MR1653016
  61. 61. R. C. Penner and J. L. Harer, Combinatorics of train tracks, Ann. Math. Studies, 125, Princeton University Press, Princeton, NJ (1992). Zbl0765.57001MR1144770
  62. 62. I. J. Schoenberg, Convex domains and linear combinations of continuous functions, Bull. Amer. Math. Soc., 39 (1933), 273–280. Zbl0007.10801MR1562598
  63. 63. I. J. Schoenberg, Über variationsvermindernde lineare Transformationen, Math. Z., 32 (1930), 321–322. Zbl56.0106.06MR1545169JFM56.0106.06
  64. 64. C. Simpson, Constructing variations of Hodge structures using Yang–Mills theory and applications to uniformization, J. Amer. Math. Soc., 1 (1988), 867–918. Zbl0669.58008MR944577
  65. 65. J.-P. Serre, Cohomologie Galoisienne (French), with a contribution by J.-L. Verdier, Lect. Notes Math., no. 5, 3rd edn., v+212pp., Springer, Berlin, New York (1965). Zbl0136.02801MR201444
  66. 66. K. Strebel, Quadratic Differentials, Springer, Berlin, Heidelberg, New York (1984). Zbl0547.30001MR743423
  67. 67. P. Sherman and A. Zelevinsky, Positivity and canonical bases in rank 2 cluster algebras of finite and affine types, Mosc. Math. J., 4 (2004), no. 4, 947–974, math.RT/0307082. Zbl1103.16018MR2124174
  68. 68. A. A. Suslin, Homology of GLn , characteristic classes and Milnor K-theory, Algebraic Geometry and its Applications, Tr. Mat. Inst. Steklova, 165 (1984), 188–204. Zbl0591.18006MR752941
  69. 69. W. Thurston, The geometry and topology of three-manifolds, Princeton University Notes, http://www.msri.org/publications/books/gt3m. 
  70. 70. A. M. Whitney, A reduction theorem for totally positive matrices, J. Anal. Math., 2 (1952), 88–92. Zbl0049.17104MR53173
  71. 71. S. Wolpert, Geometry of the Weil–Petersson completion of the Teichmüller space, Surv. Differ. Geom., Suppl. J. Differ. Geom., VIII (2002), 357–393. Zbl1049.32020MR2039996

Citations in EuDML Documents

top
  1. Vladimir V. Fock, Alexander B. Goncharov, Cluster ensembles, quantization and the dilogarithm
  2. Sophie Morier-Genoud, Valentin Ovsienko, Serge Tabachnikov, 2-frieze patterns and the cluster structure of the space of polygons
  3. François Labourie, Cross ratios, surface groups, P S L ( n , 𝐑 ) and diffeomorphisms of the circle
  4. Alexander B. Goncharov, Richard Kenyon, Dimers and cluster integrable systems
  5. François Labourie, Cross ratios, Anosov representations and the energy functional on Teichmüller space

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.