Finite element methods for nonlinear parabolic equations

Miloš Zlámal

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1977)

  • Volume: 11, Issue: 1, page 93-107
  • ISSN: 0764-583X

How to cite

top

Zlámal, Miloš. "Finite element methods for nonlinear parabolic equations." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 11.1 (1977): 93-107. <http://eudml.org/doc/193290>.

@article{Zlámal1977,
author = {Zlámal, Miloš},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
language = {eng},
number = {1},
pages = {93-107},
publisher = {Dunod},
title = {Finite element methods for nonlinear parabolic equations},
url = {http://eudml.org/doc/193290},
volume = {11},
year = {1977},
}

TY - JOUR
AU - Zlámal, Miloš
TI - Finite element methods for nonlinear parabolic equations
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1977
PB - Dunod
VL - 11
IS - 1
SP - 93
EP - 107
LA - eng
UR - http://eudml.org/doc/193290
ER -

References

top
  1. 1. P. G. CIARLET and P. A. RAVIART, Interpolation Theory Over Curved Eléments, with Applications to Finite Element Methods. Computer Meth. Appl. Mech. Eng; Vol. 1, 1972, pp. 217-249. Zbl0261.65079MR375801
  2. 2. P. G. CIARLET, Numerical Analysis of the Finite Element Method. Séminaire de Mathématiques Supérieures, Univ. de Montréal, 1975. Zbl0363.65083MR495010
  3. 3. G. COMINI, S. DEL GUIDICE, R. W. LEWIS and O. C. ZIENKIEWICZ, Finite Element Solution of Non-Linear Heat Conduction Problems with Special Reference to Phase Change. Int. J. Numer. Meth. Eng., Vol. 8, 1974, pp. 613-624. Zbl0279.76045
  4. 4. J. Jr. DOUGLAS and T. DUPONT, Galerkin Methods for Parabolic Equations. SIAM J. Numer. Anal., Vol. 7, 1970, pp. 575-626. Zbl0224.35048MR277126
  5. 5. T. DUPONT, FAIRWEATHER G. and J. P. JOHNSON, Three-Level Galerkin Methods for Parabolic Equations. SIAM J. Numer. Anal; Vol. 11, 1974, pp. 392-410. Zbl0313.65107MR403259
  6. 6. P. HENRICI, Discrete Variable Methods in Ordinary Differential Equations. Wiley, New York-London, 1962. Zbl0112.34901MR135729
  7. 7. J. D. LAMBERT, Computational Methods in Ordinary Differential Equations.Wiley, London, 1972. Zbl0258.65069MR423815
  8. 8. M. LEES, A priori Estimates for the Solutions of Difference Approximations to Parabolic Differential Equations. Duke Math. J., Vol. 27, 1960, pp. 287-311. Zbl0092.32803MR121998
  9. 9. W. LINIGER, A Criterion for A-Stability of Linear Multistep Integration Formulae. Computing, Vol.3, 1968, pp. 280-285. Zbl0169.19902MR239763
  10. 10. C. MIRANDA, Partial Differential Equations of Elliptic Type (second rev. edition). Springer, Berlin-Heidelberg-New York, 1970. Zbl0198.14101MR284700
  11. 11. M. F. WHEELER, A priori L2 Error Estimates for Galerkin Approximations to Parabolic Partial Differential Equations. SIAM J. Numer. Anal., Vol. 10, 1973, pp. 723-759. Zbl0232.35060MR351124
  12. 12. M. ZLAMAL, Curved Elements in the Finite Element Method I. SIAM J. Numer. Anal., Vol. 10, 1973, pp. 229-240. Zbl0285.65067MR395263
  13. 13. M. ZLAMAL, Curved Elements in the Finite Element Method II. SIAM J. Numer. Anal., Vol. 11, 1974, pp. 347-362. Zbl0277.65064MR343660
  14. 14. M. ZLAMAL, Finite Element Multistep Discretizations of Parabolic Boundary Value Problems. Mat. Comp., vol. 29, 1975, pp. 350-359. Zbl0302.65081MR371105
  15. 15. M. ZLAMAL, Finite Element Methods in Heat Conduction Problems. To appear in The Mathematics of Finite Elements and Applications. Zbl0348.65096MR451785

Citations in EuDML Documents

top
  1. Marie-Noëlle Le Roux, Semi-discrétisation en temps pour les équations d'évolution paraboliques lorsque l'opérateur dépend du temps
  2. Josef Nedoma, The finite element solution of parabolic equations
  3. Libor Čermák, Miloš Zlámal, Finite element solution of a nonlinear diffusion problem with a moving boundary
  4. Miloš Zlamal, Finite element solution of quasistationary nonlinear magnetic field
  5. Josef Nedoma, The finite element solution of elliptic and parabolic equations using simplicial isoparametric elements
  6. Alexander Ženíšek, Finite element methods for coupled thermoelasticity and coupled consolidation of clay
  7. Helena Růžičková, Alexander Ženíšek, Finite elements methods for solving viscoelastic thin plates
  8. Joachim A. Nitsche, L -convergence of finite element Galerkin approximations for parabolic problems

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.