Finite element methods for nonlinear parabolic equations
- Volume: 11, Issue: 1, page 93-107
- ISSN: 0764-583X
Access Full Article
topHow to cite
topZlámal, Miloš. "Finite element methods for nonlinear parabolic equations." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 11.1 (1977): 93-107. <http://eudml.org/doc/193290>.
@article{Zlámal1977,
author = {Zlámal, Miloš},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
language = {eng},
number = {1},
pages = {93-107},
publisher = {Dunod},
title = {Finite element methods for nonlinear parabolic equations},
url = {http://eudml.org/doc/193290},
volume = {11},
year = {1977},
}
TY - JOUR
AU - Zlámal, Miloš
TI - Finite element methods for nonlinear parabolic equations
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1977
PB - Dunod
VL - 11
IS - 1
SP - 93
EP - 107
LA - eng
UR - http://eudml.org/doc/193290
ER -
References
top- 1. P. G. CIARLET and P. A. RAVIART, Interpolation Theory Over Curved Eléments, with Applications to Finite Element Methods. Computer Meth. Appl. Mech. Eng; Vol. 1, 1972, pp. 217-249. Zbl0261.65079MR375801
- 2. P. G. CIARLET, Numerical Analysis of the Finite Element Method. Séminaire de Mathématiques Supérieures, Univ. de Montréal, 1975. Zbl0363.65083MR495010
- 3. G. COMINI, S. DEL GUIDICE, R. W. LEWIS and O. C. ZIENKIEWICZ, Finite Element Solution of Non-Linear Heat Conduction Problems with Special Reference to Phase Change. Int. J. Numer. Meth. Eng., Vol. 8, 1974, pp. 613-624. Zbl0279.76045
- 4. J. Jr. DOUGLAS and T. DUPONT, Galerkin Methods for Parabolic Equations. SIAM J. Numer. Anal., Vol. 7, 1970, pp. 575-626. Zbl0224.35048MR277126
- 5. T. DUPONT, FAIRWEATHER G. and J. P. JOHNSON, Three-Level Galerkin Methods for Parabolic Equations. SIAM J. Numer. Anal; Vol. 11, 1974, pp. 392-410. Zbl0313.65107MR403259
- 6. P. HENRICI, Discrete Variable Methods in Ordinary Differential Equations. Wiley, New York-London, 1962. Zbl0112.34901MR135729
- 7. J. D. LAMBERT, Computational Methods in Ordinary Differential Equations.Wiley, London, 1972. Zbl0258.65069MR423815
- 8. M. LEES, A priori Estimates for the Solutions of Difference Approximations to Parabolic Differential Equations. Duke Math. J., Vol. 27, 1960, pp. 287-311. Zbl0092.32803MR121998
- 9. W. LINIGER, A Criterion for A-Stability of Linear Multistep Integration Formulae. Computing, Vol.3, 1968, pp. 280-285. Zbl0169.19902MR239763
- 10. C. MIRANDA, Partial Differential Equations of Elliptic Type (second rev. edition). Springer, Berlin-Heidelberg-New York, 1970. Zbl0198.14101MR284700
- 11. M. F. WHEELER, A priori L2 Error Estimates for Galerkin Approximations to Parabolic Partial Differential Equations. SIAM J. Numer. Anal., Vol. 10, 1973, pp. 723-759. Zbl0232.35060MR351124
- 12. M. ZLAMAL, Curved Elements in the Finite Element Method I. SIAM J. Numer. Anal., Vol. 10, 1973, pp. 229-240. Zbl0285.65067MR395263
- 13. M. ZLAMAL, Curved Elements in the Finite Element Method II. SIAM J. Numer. Anal., Vol. 11, 1974, pp. 347-362. Zbl0277.65064MR343660
- 14. M. ZLAMAL, Finite Element Multistep Discretizations of Parabolic Boundary Value Problems. Mat. Comp., vol. 29, 1975, pp. 350-359. Zbl0302.65081MR371105
- 15. M. ZLAMAL, Finite Element Methods in Heat Conduction Problems. To appear in The Mathematics of Finite Elements and Applications. Zbl0348.65096MR451785
Citations in EuDML Documents
top- Marie-Noëlle Le Roux, Semi-discrétisation en temps pour les équations d'évolution paraboliques lorsque l'opérateur dépend du temps
- Josef Nedoma, The finite element solution of parabolic equations
- Libor Čermák, Miloš Zlámal, Finite element solution of a nonlinear diffusion problem with a moving boundary
- Miloš Zlamal, Finite element solution of quasistationary nonlinear magnetic field
- Josef Nedoma, The finite element solution of elliptic and parabolic equations using simplicial isoparametric elements
- Alexander Ženíšek, Finite element methods for coupled thermoelasticity and coupled consolidation of clay
- Helena Růžičková, Alexander Ženíšek, Finite elements methods for solving viscoelastic thin plates
- Joachim A. Nitsche, -convergence of finite element Galerkin approximations for parabolic problems
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.