Semidiscrete and single step fully discrete approximations for second order hyperbolic equations

Garth A. Baker; James H. Bramble

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1979)

  • Volume: 13, Issue: 2, page 75-100
  • ISSN: 0764-583X

How to cite

top

Baker, Garth A., and Bramble, James H.. "Semidiscrete and single step fully discrete approximations for second order hyperbolic equations." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 13.2 (1979): 75-100. <http://eudml.org/doc/193340>.

@article{Baker1979,
author = {Baker, Garth A., Bramble, James H.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Finite Element Approximation; Initial Boundary Value Problems; Second Order Hyperbolic Equations; Semidiscrete and Fully Discrete Schemas; Rate of Convergence; High Order Accurate; Regularization Method; Parabolic Problems; Discretized Problem; Sparse Linear Systems; Numerical Example},
language = {eng},
number = {2},
pages = {75-100},
publisher = {Dunod},
title = {Semidiscrete and single step fully discrete approximations for second order hyperbolic equations},
url = {http://eudml.org/doc/193340},
volume = {13},
year = {1979},
}

TY - JOUR
AU - Baker, Garth A.
AU - Bramble, James H.
TI - Semidiscrete and single step fully discrete approximations for second order hyperbolic equations
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1979
PB - Dunod
VL - 13
IS - 2
SP - 75
EP - 100
LA - eng
KW - Finite Element Approximation; Initial Boundary Value Problems; Second Order Hyperbolic Equations; Semidiscrete and Fully Discrete Schemas; Rate of Convergence; High Order Accurate; Regularization Method; Parabolic Problems; Discretized Problem; Sparse Linear Systems; Numerical Example
UR - http://eudml.org/doc/193340
ER -

References

top
  1. 1 I BABUSKA, Survey Lectures on the Mathematical Foundations of the finite element method, in « The Mathematical Foundations of the finite element method wit applications to partial differential equations », A K Aziz, e d , Academic Press, New York, 1972 Zbl0268.65052MR421106
  2. 2 I BABUSKA, The finite element method with Lagrangian multipliers, Numer Math , 20, 1973, p 179-192 Zbl0258.65108MR359352
  3. 3 G A BAKER, Error estimates for finite element methods for second order hyperbolic equations, S I A M , J Numer Anal, 13, n° 4, 1976, p 564-576 Zbl0345.65059MR423836
  4. 4 G A BAKER, Finite element-Galerkin approximations for hyperbolic equations with discontinuons coefficients, Tech Rep Math , École Polytechnique de Lausanne, 1973 
  5. 5 G A BAKER, J H BRAMBLE, V THOMEE, Single step Galerkin approximations for parabolic equations Math Cornp 31, n° 140 1977 p 818-847 Zbl0378.65061MR448947
  6. 6 J H BRAMBLE, J OSBORN, Rate of convergence estimates for nonself-adjoint eigen-value approximations, Math Comp, 27, n° 123, 1973, p 525-549 Zbl0305.65064MR366029
  7. 7 J H BRAMBLE, V THOMEE, Discrete time Galerkin methods for a par abolie boundary value problem, Ann Mat Pura Appl, Serie IV, 101, 1974, p 115-152 Zbl0306.65073MR388805
  8. 8 M CROUZEIX, Sur l'approximation des equations differentielles operationnelles lineaires par des methodes de Runge-Kutta, These, Univ de Pans VI, 1975 
  9. 9 T DUPONT, L 2 estimates for Galerkin methods for second order hyperbolic equations, S I A M , J Numer Anal, 10, n° 5, 1973, p 880-889 Zbl0239.65087MR349045
  10. 10 J NITSCHE, Uber ein Vartationspnnzip zur Losung von Dirichlet-Problemen bei Verwendung von Teilraumen, die keinen Randbedingungen unterworfen sind, A B H Math Sem, Univ Hamburg, 36, 1971, p 9-15 Zbl0229.65079MR341903
  11. 11 J NÏTSCHE, On Dinchlet problems using subspaces with nearly zero boundary conditions, in « The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations », A K Aziz, ed , Academic Press, New York, 1972, p 603-627 Zbl0271.65059MR426456
  12. 12 S P NØRSETT, One step methods of Hermite type for numencal integration of stiff systems, B I T 14, 1974, p 63-77 Zbl0278.65078MR337014
  13. 13 R S VARGA, Matrix iterative analysis, Prentice Hall, Englewood Cliffs, N J , 1962 Zbl0133.08602MR158502

Citations in EuDML Documents

top
  1. Tunc Geveci, Ian Christie, The convergence of a Galerkin approximation scheme for an extensible beam
  2. L. A. Bales, Semidiscrete and single step fully discrete finite element approximations for second order hyperbolic equations with nonsmooth solutions
  3. Georgios Akrivis, Charalambos Makridakis, Galerkin time-stepping methods for nonlinear parabolic equations
  4. Ch. G. Makridakis, P. Monk, Time-discrete finite element schemes for Maxwell's equations
  5. Tunc Geveci, On the application of mixed finite element methods to the wave equations

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.