Semidiscrete and single step fully discrete approximations for second order hyperbolic equations
Garth A. Baker; James H. Bramble
- Volume: 13, Issue: 2, page 75-100
- ISSN: 0764-583X
Access Full Article
topHow to cite
topBaker, Garth A., and Bramble, James H.. "Semidiscrete and single step fully discrete approximations for second order hyperbolic equations." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 13.2 (1979): 75-100. <http://eudml.org/doc/193340>.
@article{Baker1979,
author = {Baker, Garth A., Bramble, James H.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Finite Element Approximation; Initial Boundary Value Problems; Second Order Hyperbolic Equations; Semidiscrete and Fully Discrete Schemas; Rate of Convergence; High Order Accurate; Regularization Method; Parabolic Problems; Discretized Problem; Sparse Linear Systems; Numerical Example},
language = {eng},
number = {2},
pages = {75-100},
publisher = {Dunod},
title = {Semidiscrete and single step fully discrete approximations for second order hyperbolic equations},
url = {http://eudml.org/doc/193340},
volume = {13},
year = {1979},
}
TY - JOUR
AU - Baker, Garth A.
AU - Bramble, James H.
TI - Semidiscrete and single step fully discrete approximations for second order hyperbolic equations
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1979
PB - Dunod
VL - 13
IS - 2
SP - 75
EP - 100
LA - eng
KW - Finite Element Approximation; Initial Boundary Value Problems; Second Order Hyperbolic Equations; Semidiscrete and Fully Discrete Schemas; Rate of Convergence; High Order Accurate; Regularization Method; Parabolic Problems; Discretized Problem; Sparse Linear Systems; Numerical Example
UR - http://eudml.org/doc/193340
ER -
References
top- 1 I BABUSKA, Survey Lectures on the Mathematical Foundations of the finite element method, in « The Mathematical Foundations of the finite element method wit applications to partial differential equations », A K Aziz, e d , Academic Press, New York, 1972 Zbl0268.65052MR421106
- 2 I BABUSKA, The finite element method with Lagrangian multipliers, Numer Math , 20, 1973, p 179-192 Zbl0258.65108MR359352
- 3 G A BAKER, Error estimates for finite element methods for second order hyperbolic equations, S I A M , J Numer Anal, 13, n° 4, 1976, p 564-576 Zbl0345.65059MR423836
- 4 G A BAKER, Finite element-Galerkin approximations for hyperbolic equations with discontinuons coefficients, Tech Rep Math , École Polytechnique de Lausanne, 1973
- 5 G A BAKER, J H BRAMBLE, V THOMEE, Single step Galerkin approximations for parabolic equations Math Cornp 31, n° 140 1977 p 818-847 Zbl0378.65061MR448947
- 6 J H BRAMBLE, J OSBORN, Rate of convergence estimates for nonself-adjoint eigen-value approximations, Math Comp, 27, n° 123, 1973, p 525-549 Zbl0305.65064MR366029
- 7 J H BRAMBLE, V THOMEE, Discrete time Galerkin methods for a par abolie boundary value problem, Ann Mat Pura Appl, Serie IV, 101, 1974, p 115-152 Zbl0306.65073MR388805
- 8 M CROUZEIX, Sur l'approximation des equations differentielles operationnelles lineaires par des methodes de Runge-Kutta, These, Univ de Pans VI, 1975
- 9 T DUPONT, L estimates for Galerkin methods for second order hyperbolic equations, S I A M , J Numer Anal, 10, n° 5, 1973, p 880-889 Zbl0239.65087MR349045
- 10 J NITSCHE, Uber ein Vartationspnnzip zur Losung von Dirichlet-Problemen bei Verwendung von Teilraumen, die keinen Randbedingungen unterworfen sind, A B H Math Sem, Univ Hamburg, 36, 1971, p 9-15 Zbl0229.65079MR341903
- 11 J NÏTSCHE, On Dinchlet problems using subspaces with nearly zero boundary conditions, in « The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations », A K Aziz, ed , Academic Press, New York, 1972, p 603-627 Zbl0271.65059MR426456
- 12 S P NØRSETT, One step methods of Hermite type for numencal integration of stiff systems, B I T 14, 1974, p 63-77 Zbl0278.65078MR337014
- 13 R S VARGA, Matrix iterative analysis, Prentice Hall, Englewood Cliffs, N J , 1962 Zbl0133.08602MR158502
Citations in EuDML Documents
top- Tunc Geveci, Ian Christie, The convergence of a Galerkin approximation scheme for an extensible beam
- L. A. Bales, Semidiscrete and single step fully discrete finite element approximations for second order hyperbolic equations with nonsmooth solutions
- Georgios Akrivis, Charalambos Makridakis, Galerkin time-stepping methods for nonlinear parabolic equations
- Ch. G. Makridakis, P. Monk, Time-discrete finite element schemes for Maxwell's equations
- Tunc Geveci, On the application of mixed finite element methods to the wave equations
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.