The discontinuous Galerkin method for semilinear parabolic problems

D. Estep; S. Larsson

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1993)

  • Volume: 27, Issue: 1, page 35-54
  • ISSN: 0764-583X

How to cite

top

Estep, D., and Larsson, S.. "The discontinuous Galerkin method for semilinear parabolic problems." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 27.1 (1993): 35-54. <http://eudml.org/doc/193693>.

@article{Estep1993,
author = {Estep, D., Larsson, S.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Galerkin method; variable spatial meshes; variable time step; semilinear; numerical example},
language = {eng},
number = {1},
pages = {35-54},
publisher = {Dunod},
title = {The discontinuous Galerkin method for semilinear parabolic problems},
url = {http://eudml.org/doc/193693},
volume = {27},
year = {1993},
}

TY - JOUR
AU - Estep, D.
AU - Larsson, S.
TI - The discontinuous Galerkin method for semilinear parabolic problems
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1993
PB - Dunod
VL - 27
IS - 1
SP - 35
EP - 54
LA - eng
KW - Galerkin method; variable spatial meshes; variable time step; semilinear; numerical example
UR - http://eudml.org/doc/193693
ER -

References

top
  1. [1] T. DUPONT, Mesh modification for evolution equations, Math. Comp. 39 (1982), 85-107. Zbl0493.65044MR658215
  2. [2] K. ERIKSSON and C. JOHNSON, Adaptive finite element methods for parabolic problems I : a linear model problem, SIAM J. Numer. Anal. 28 (1991), 43-77. Zbl0732.65093MR1083324
  3. [3] K. ERIKSSON, C. JOHNSON and V. THOMÉE, Time discretization of parabolic problems by the discontinuous Galerkin method, M2AN 19 (1985), 611-643. Zbl0589.65070MR826227
  4. [4] Y.-Y. NIE and V. THOMÉE, A lumped mass finite-element method with quadrature for a non-linear parabolic problem, IMA J. Numer. Anal. 5, 371-396. Zbl0591.65079MR816063
  5. [5] V. THOMÉE, Galerkin Finite Element Methods for Parabolic Problems, Lecture Notes in Mathematics, vol. 1054, Springer-Verlag, 1984. Zbl0528.65052MR744045

Citations in EuDML Documents

top
  1. Georgios Akrivis, Charalambos Makridakis, Galerkin time-stepping methods for nonlinear parabolic equations
  2. Georgios Akrivis, Charalambos Makridakis, Galerkin time-stepping methods for nonlinear parabolic equations
  3. Konstantinos Chrysafinos, Sotirios P. Filopoulos, Theodosios K. Papathanasiou, Error estimates for a FitzHugh–Nagumo parameter-dependent reaction-diffusion system
  4. Konstantinos Chrysafinos, Sotirios P. Filopoulos, Theodosios K. Papathanasiou, Error estimates for a FitzHugh–Nagumo parameter-dependent reaction-diffusion system
  5. Martin Balazovjech, Miloslav Feistauer, Jaromír Horáček, Martin Hadrava, Adam Kosík, Space-time discontinuous Galerkin method for the solution of fluid-structure interaction
  6. Martin Balazovjech, Miloslav Feistauer, On the stability of the ALE space-time discontinuous Galerkin method for nonlinear convection-diffusion problems in time-dependent domains
  7. Konstantinos Chrysafinos, Convergence of discontinuous Galerkin approximations of an optimal control problem associated to semilinear parabolic PDE's

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.