Strichartz inequalities for Lipschitz metrics on manifolds and nonlinear Schrödinger equation on domains

Ramona Anton

Bulletin de la Société Mathématique de France (2008)

  • Volume: 136, Issue: 1, page 27-65
  • ISSN: 0037-9484

Abstract

top
We prove wellposedness of the Cauchy problem for the nonlinear Schrödinger equation for any defocusing power nonlinearity on a domain of the plane with Dirichlet boundary conditions. The main argument is based on a generalized Strichartz inequality on manifolds with Lipschitz metric.

How to cite

top

Anton, Ramona. "Strichartz inequalities for Lipschitz metrics on manifolds and nonlinear Schrödinger equation on domains." Bulletin de la Société Mathématique de France 136.1 (2008): 27-65. <http://eudml.org/doc/272498>.

@article{Anton2008,
abstract = {We prove wellposedness of the Cauchy problem for the nonlinear Schrödinger equation for any defocusing power nonlinearity on a domain of the plane with Dirichlet boundary conditions. The main argument is based on a generalized Strichartz inequality on manifolds with Lipschitz metric.},
author = {Anton, Ramona},
journal = {Bulletin de la Société Mathématique de France},
keywords = {nonlinear schrödinger; dispersive equations; Lipschitz metric},
language = {eng},
number = {1},
pages = {27-65},
publisher = {Société mathématique de France},
title = {Strichartz inequalities for Lipschitz metrics on manifolds and nonlinear Schrödinger equation on domains},
url = {http://eudml.org/doc/272498},
volume = {136},
year = {2008},
}

TY - JOUR
AU - Anton, Ramona
TI - Strichartz inequalities for Lipschitz metrics on manifolds and nonlinear Schrödinger equation on domains
JO - Bulletin de la Société Mathématique de France
PY - 2008
PB - Société mathématique de France
VL - 136
IS - 1
SP - 27
EP - 65
AB - We prove wellposedness of the Cauchy problem for the nonlinear Schrödinger equation for any defocusing power nonlinearity on a domain of the plane with Dirichlet boundary conditions. The main argument is based on a generalized Strichartz inequality on manifolds with Lipschitz metric.
LA - eng
KW - nonlinear schrödinger; dispersive equations; Lipschitz metric
UR - http://eudml.org/doc/272498
ER -

References

top
  1. [1] S. Alinhac & P. Gérard – Opérateurs pseudo-différentiels et théorème de Nash-Moser, Savoirs Actuels, InterÉditions, 1991. Zbl0791.47044
  2. [2] H. Bahouri & J.-Y. Chemin – « Équations d’ondes quasilinéaires et estimations de Strichartz », Amer. J. Math.121 (1999), p. 1337–1377. Zbl0952.35073MR1719798
  3. [3] V. Banica – « Dispersion and Strichartz inequalities for Schrödinger equations with singular coefficients », SIAM J. Math. Anal.35 (2003), p. 868–883. Zbl1058.35048MR2049025
  4. [4] J. Bourgain – Global solutions of nonlinear Schrödinger equations, American Mathematical Society Colloquium Publications, vol. 46, American Mathematical Society, 1999. Zbl0933.35178MR1691575
  5. [5] H. Brézis & T. Gallouet – « Nonlinear Schrödinger evolution equations », Nonlinear Anal.4 (1980), p. 677–681. Zbl0451.35023MR582536
  6. [6] N. Burq, P. Gérard & N. Tzvetkov – « Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds », Amer. J. Math.126 (2004), p. 569–605. Zbl1067.58027MR2058384
  7. [7] N. Burq & F. Planchon – « Smoothing and dispersive estimates for 1D Schrödinger equations with BV coefficients and applications », J. Funct. Anal.236 (2006), p. 265–298. Zbl1293.35264MR2227135
  8. [8] C. Castro & E. Zuazua – « Concentration and lack of observability of waves in highly heterogeneous media », Arch. Ration. Mech. Anal.164 (2002), p. 39–72. Zbl1016.35003MR1921162
  9. [9] T. Cazenave – Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics, vol. 10, New York University Courant Institute of Mathematical Sciences, 2003. Zbl1055.35003
  10. [10] T. Cazenave & F. B. Weissler – « The Cauchy problem for the critical nonlinear Schrödinger equation in H s », Nonlinear Anal.14 (1990), p. 807–836. Zbl0706.35127MR1055532
  11. [11] D. Gilbarg & N. S. Trudinger – Elliptic partial differential equations of second order, Classics in Mathematics, Springer, 2001, Reprint of the 1998 edition. Zbl1042.35002MR1814364
  12. [12] J. Ginibre & G. Velo – « The global Cauchy problem for the nonlinear Schrödinger equation revisited », Ann. Inst. H. Poincaré Anal. Non Linéaire2 (1985), p. 309–327. Zbl0586.35042MR801582
  13. [13] —, « Scattering theory in the energy space for a class of nonlinear Schrödinger equations », J. Math. Pures Appl. (9) 64 (1985), p. 363–401. Zbl0535.35069MR839728
  14. [14] L. Hörmander – The analysis of linear partial differential operators. I, Classics in Mathematics, Springer, 2003. Zbl1028.35001
  15. [15] T. Kato – « On nonlinear Schrödinger equations », Ann. Inst. H. Poincaré Phys. Théor.46 (1987), p. 113–129. Zbl0632.35038
  16. [16] M. Keel & T. Tao – « Endpoint Strichartz estimates », Amer. J. Math.120 (1998), p. 955–980. Zbl0922.35028MR1646048
  17. [17] T. Ogawa & T. Ozawa – « Trudinger type inequalities and uniqueness of weak solutions for the nonlinear Schrödinger mixed problem », J. Math. Anal. Appl.155 (1991), p. 531–540. Zbl0733.35095MR1097298
  18. [18] M. Reed & B. Simon – Methods of modern mathematical physics. I, second éd., Academic Press Inc. [Harcourt Brace Jovanovich Publishers], 1980, Functional analysis. Zbl0459.46001MR751959
  19. [19] D. Salort – « Dispersion and Strichartz inequalities for the one-dimensional Schrödinger equation with variable coefficients », Int. Math. Res. Not. (2005), p. 687–700. Zbl1160.35509MR2146323
  20. [20] H. Smith & C. Sogge – « L q bounds for spectral clusters », in Phase Space Analysis of PDEs, Pisa, 2004. 
  21. [21] M. Spivak – A comprehensive introduction to differential geometry. Vol. One, Published by M. Spivak, Brandeis Univ., Waltham, Mass., 1970. Zbl0306.53003MR267467
  22. [22] G. Staffilani & D. Tataru – « Strichartz estimates for a Schrödinger operator with nonsmooth coefficients », Comm. Partial Differential Equations27 (2002), p. 1337–1372. Zbl1010.35015MR1924470
  23. [23] R. S. Strichartz – « Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations », Duke Math. J.44 (1977), p. 705–714. Zbl0372.35001MR512086
  24. [24] C. Sulem & P.-L. Sulem – The nonlinear Schrödinger equation, Applied Mathematical Sciences, vol. 139, Springer, 1999, Self-focusing and wave collapse. Zbl0928.35157MR1696311
  25. [25] D. Tataru – « Strichartz estimates for operators with nonsmooth coefficients and the nonlinear wave equation », Amer. J. Math.122 (2000), p. 349–376. Zbl0959.35125MR1749052
  26. [26] M. Tsutsumi – « On smooth solutions to the initial-boundary value problem for the nonlinear Schrödinger equation in two space dimensions », Nonlinear Anal.13 (1989), p. 1051–1056. Zbl0693.35133MR1013309
  27. [27] M. Vladimirov – « On the solvability of mixed problem for a nonlinear equation of Schrödinger type », Sov. Math. Dokl.29 (1984), p. 281–284. Zbl0585.35019
  28. [28] K. Yajima – « Existence of solutions for Schrödinger evolution equations », Comm. Math. Phys.110 (1987), p. 415–426. Zbl0638.35036MR891945

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.