The Obstacle Problem Revisited.
The journal of Fourier analysis and applications [[Elektronische Ressource]] (1998)
- Volume: 4, Issue: 4-5, page 383-402
- ISSN: 1069-5869; 1531-5851/e
Access Full Article
topHow to cite
topCaffarelli, L.A.. "The Obstacle Problem Revisited.." The journal of Fourier analysis and applications [[Elektronische Ressource]] 4.4-5 (1998): 383-402. <http://eudml.org/doc/59573>.
@article{Caffarelli1998,
author = {Caffarelli, L.A.},
journal = {The journal of Fourier analysis and applications [[Elektronische Ressource]]},
keywords = {minimal surface; obstacle problem; Dirichlet integral; free boundary},
number = {4-5},
pages = {383-402},
title = {The Obstacle Problem Revisited.},
url = {http://eudml.org/doc/59573},
volume = {4},
year = {1998},
}
TY - JOUR
AU - Caffarelli, L.A.
TI - The Obstacle Problem Revisited.
JO - The journal of Fourier analysis and applications [[Elektronische Ressource]]
PY - 1998
VL - 4
IS - 4-5
SP - 383
EP - 402
KW - minimal surface; obstacle problem; Dirichlet integral; free boundary
UR - http://eudml.org/doc/59573
ER -
Citations in EuDML Documents
top- S. Cacace, A. Chambolle, A. DeSimone, L. Fedeli, Macroscopic contact angle and liquid drops on rough solid surfaces via homogenization and numerical simulations
- Erik Lindgren, Henrik Shahgholian, Anders Edquist, On the two-phase membrane problem with coefficients below the Lipschitz threshold
- Régis Monneau, On the regularity of a free boundary for a nonlinear obstacle problem arising in superconductor modelling
- Xavier Ros-Oton, Joaquim Serra, Understanding singularitiesin free boundary problems
- Francesco Bigolin, Regularity results for a class of obstacle problems in Heisenberg groups
- V. Caselles, M. Novaga, A. Chambolle, Some remarks on uniqueness and regularity of Cheeger sets
- Ivan Blank, Henrik Shahgholian, Boundary regularity and compactness for overdetermined problems
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.