Henkin-Ramirez formulas with weight factors
Annales de l'institut Fourier (1982)
- Volume: 32, Issue: 3, page 91-110
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBerndtsson, B., and Andersson, Mats. "Henkin-Ramirez formulas with weight factors." Annales de l'institut Fourier 32.3 (1982): 91-110. <http://eudml.org/doc/74554>.
@article{Berndtsson1982,
abstract = {We construct a generalization of the Henkin-Ramírez (or Cauchy-Leray) kernels for the $\overline\{\partial \}$-equation. The generalization consists in multiplication by a weight factor and addition of suitable lower order terms, and is found via a representation as an “oscillating integral”. As special cases we consider weights which behave like a power of the distance to the boundary, like exp-$\phi $ with $\phi $ convex, and weights of polynomial decrease in $\{\bf C\}^n$. We also briefly consider kernels with singularities on subvarieties of domains in $\{\bf C\}^n$.},
author = {Berndtsson, B., Andersson, Mats},
journal = {Annales de l'institut Fourier},
keywords = {Henkin-Ramirez kernels; weight factor; delta-equation; pseudoconvex},
language = {eng},
number = {3},
pages = {91-110},
publisher = {Association des Annales de l'Institut Fourier},
title = {Henkin-Ramirez formulas with weight factors},
url = {http://eudml.org/doc/74554},
volume = {32},
year = {1982},
}
TY - JOUR
AU - Berndtsson, B.
AU - Andersson, Mats
TI - Henkin-Ramirez formulas with weight factors
JO - Annales de l'institut Fourier
PY - 1982
PB - Association des Annales de l'Institut Fourier
VL - 32
IS - 3
SP - 91
EP - 110
AB - We construct a generalization of the Henkin-Ramírez (or Cauchy-Leray) kernels for the $\overline{\partial }$-equation. The generalization consists in multiplication by a weight factor and addition of suitable lower order terms, and is found via a representation as an “oscillating integral”. As special cases we consider weights which behave like a power of the distance to the boundary, like exp-$\phi $ with $\phi $ convex, and weights of polynomial decrease in ${\bf C}^n$. We also briefly consider kernels with singularities on subvarieties of domains in ${\bf C}^n$.
LA - eng
KW - Henkin-Ramirez kernels; weight factor; delta-equation; pseudoconvex
UR - http://eudml.org/doc/74554
ER -
References
top- [1] B. BERNDTSSON, Integral formulas for the ∂∂-equation and zeros of bounded holomorphic functions in the unit ball, Math. Ann., 249 (1980), 163-176. Zbl0414.31007MR81m:32012
- [2] P. CHARPENTIER, Solutions minimales de l'équation ∂u = f dans la boule et dans le polydisque, Ann. Inst. Fourier, 30, 4 (1980), 121-153. Zbl0425.32009MR82j:32009
- [3] A. CUMENGE, Extension holomorphe dans des classes de Hardy, Thèse, Université Paul Sabatier de Toulouse, 1980.
- [4] S.V. DAUTOV, G.M. HENKIN, Zeros of holomorphic functions of finite order and weighted estimates for solutions of the -equation (russian), Math. Sb., 107 (1979), 163-174. Zbl0392.32001MR80b:32005
- [5] G.M. HENKIN, Integral representation of a function in a strictly pseudo-convex domain and applications to the -problem (russian), Mat. Sb., 82 (1970), 300-308. Zbl0216.10402MR42 #534
- [6] G.M. HENKIN, Solutions with bounds of the equations of H. Lewy and Poincaré-Lelong. Construction of functions of the Nevanlinna class with given zeros in a strictly pseudoconvex domain, Soviet Math. Dokl., 16 (1976), 3-13.
- [7] G.M. HENKIN, The Lewy equation and analysis on pseudoconvex manifolds, Russian Math. Surveys, 32 (1977), 59-130. Zbl0382.35038MR56 #12318
- [8] E. RAMIREZ DE ARELLANO, Ein Divisionsproblem und Randintegraldarstellungen in der komplexen Analysis, Math. Ann., 184 (1970), 172-187. Zbl0189.09702MR42 #4767
- [9] H. SKODA, Valeurs au bord pour les solutions de l’opérateur et caractérisation des zéros des fonctions de la classe de Nevanlinna, Bull. Soc. Math. France, 104 (1976), 225-299. Zbl0351.31007MR56 #8913
- [10] H. SKODA, -cohomologie à croissance lente dans Cn, Ann. Scient. Ec. Norm. Sup., 4 (1971), 97-120. Zbl0211.40402MR44 #4241
- [11] N. ØVRELID, Integral representation formulas and Lp-estimates for the -equation, Math. Scand., 29 (1971), 137-160. Zbl0227.35069
Citations in EuDML Documents
top- Alexandre A. Shlapunov, On iterations of Green type integrals for matrix factorizations of the Laplace operator
- Jim Arlebrink, Zeros of bounded holomorphic functions in strictly pseudoconvex domains in
- Bo Berndtsson, Cauchy-Leray forms and vector bundles
- Xavier Massaneda, Interpolation by holomorphic functions in the unit ball with polynomial growth
- A. Yger, C. A. Berenstein, Traitement du signal et algorithmes explicites de déconvolution
- Miroslav Engliš, Jaak Peetre, Covariant differential operators and Green's functions
- Emmanuel Mazzilli, Équation de Cauchy-Riemann dans les ellipsoïdes réels de
- C. A. Berenstein, A. Yger, Exponential polynomials and -modules
- C. Berenstein, A. Yger, The use of D-modules to study exponential polynomials
- Klas Diederich, Emmanuel Mazzilli, Extension and restriction of holomorphic functions
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.