Lower bounds for pseudo-differential operators
Nicolas Lerner; Jean Nourrigat
Annales de l'institut Fourier (1990)
- Volume: 40, Issue: 3, page 657-682
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topLerner, Nicolas, and Nourrigat, Jean. "Lower bounds for pseudo-differential operators." Annales de l'institut Fourier 40.3 (1990): 657-682. <http://eudml.org/doc/74891>.
@article{Lerner1990,
abstract = {This paper contains some new results on lower bounds for pseudo-differential operators whose symbols do not remain positive. Non-negativity of averages of the symbol on canonical images of the unit ball is sufficient to get a Gårding type inequality for Schrödinger operators with magnetic potential and one dimensional pseudo-differential operators.},
author = {Lerner, Nicolas, Nourrigat, Jean},
journal = {Annales de l'institut Fourier},
keywords = {nonpositive symbol; Gårding’s inequality; lower bounds; magnetic potential},
language = {eng},
number = {3},
pages = {657-682},
publisher = {Association des Annales de l'Institut Fourier},
title = {Lower bounds for pseudo-differential operators},
url = {http://eudml.org/doc/74891},
volume = {40},
year = {1990},
}
TY - JOUR
AU - Lerner, Nicolas
AU - Nourrigat, Jean
TI - Lower bounds for pseudo-differential operators
JO - Annales de l'institut Fourier
PY - 1990
PB - Association des Annales de l'Institut Fourier
VL - 40
IS - 3
SP - 657
EP - 682
AB - This paper contains some new results on lower bounds for pseudo-differential operators whose symbols do not remain positive. Non-negativity of averages of the symbol on canonical images of the unit ball is sufficient to get a Gårding type inequality for Schrödinger operators with magnetic potential and one dimensional pseudo-differential operators.
LA - eng
KW - nonpositive symbol; Gårding’s inequality; lower bounds; magnetic potential
UR - http://eudml.org/doc/74891
ER -
References
top- [1] A. CORDOBA, C. FEFFERMAN, Wave packets and Fourier integral operators, Comm. PDE, 3, 11 (1978), 979-1005. Zbl0389.35046MR80a:35117
- [2] C.L. FEFFERMAN, The uncertainty principle, Bull. AMS, 9 (1983), 129-206. Zbl0526.35080MR85f:35001
- [3] C. FEFFERMAN, D.H. PHONG, On positivity of pseudo-differential operators, Proc. Natl. Ac. Sc. USA, 75 (1978), 4673-4674. Zbl0391.35062MR80b:47064
- [4] C. FEFFERMAN, D.H. PHONG, On the lowest eigenvalue of a pseudo-differential operator, Proc. Natl. Ac. Sc. USA, 76 (1979), 6055-6056. Zbl0434.35071MR81d:47032
- [5] C. FEFFERMAN, D.H. PHONG, On the asymptotic eigenvalue distribution, Proc. Natl. Ac. Sc. USA, 77 (1980), 5622-5625. Zbl0443.35082MR82h:35101
- [6] C. FEFFERMAN, D.H. PHONG, The uncertainty principle and sharp Garding inequalities, CPAM, 34 (1981), 285-331. Zbl0458.35099MR82j:35140
- [7] C. FEFFERMAN, D.H. PHONG, Symplectic geometry and positivity of pseudo-differential operators, Proc. Natl. Ac. Sc. USA, 79 (1982), 710-713. Zbl0553.35089MR83f:35108
- [8] B. HELFFER, J. NOURRIGAT, Hypoellipticité maximale pour des opérateurs polynômes de champs de vecteurs, Progress in Math. 58, Birkhauser, 1985. Zbl0568.35003MR88i:35029
- [9] L. HÖRMANDER, Pseudo-differential operators and non-elliptic boundary problems, Ann. of Math., 83 (1966), 129-209. Zbl0132.07402MR38 #1387
- [10] L. HÖRMANDER, The Weyl calculus of pseudo-differential operators, CPAM, 32 (1979), 359-443. Zbl0388.47032
- [11] L. HÖRMANDER, The analysis of linear partial differential operators, four volumes, Berlin, Springer, 1985. Zbl0601.35001
- [12] P.D. LAX, L. NIRENBERG, On stability for difference schemes : a sharp form of Garding's inequality, CPAM 19 (1966), 473-492. Zbl0185.22801MR34 #6352
- [13] A. MOHAMED, J. NOURRIGAT, Encadrement du N(λ) pour un opérateur de Schrödinger avec des champs électromagnétiques, to appear J. Math. Pures Appl. Zbl0725.35068
- [14] J. NOURRIGAT, Subelliptic systems, to appear in Comm. PDE. Zbl0723.35089
Citations in EuDML Documents
top- Ronan Pouliquen, Lower bounds for Schrödinger operators in H¹(ℝ)
- Jean-Michel Bony, Sommes de carrés de fonctions dérivables
- Frédéric Hérau, Fefferman's SAK principle in one dimension
- Jean-Michel Bony, Décomposition des fonctions positives en sommes de carrés
- Nicolas Lerner, Opérateurs pseudo-différentiels et capacités symplectiques
- Bernard Helffer, Remarks on decay of correlations and Witten laplacians III. Application to logarithmic Sobolev inequalities
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.