Lower bounds for pseudo-differential operators

Nicolas Lerner; Jean Nourrigat

Annales de l'institut Fourier (1990)

  • Volume: 40, Issue: 3, page 657-682
  • ISSN: 0373-0956

Abstract

top
This paper contains some new results on lower bounds for pseudo-differential operators whose symbols do not remain positive. Non-negativity of averages of the symbol on canonical images of the unit ball is sufficient to get a Gårding type inequality for Schrödinger operators with magnetic potential and one dimensional pseudo-differential operators.

How to cite

top

Lerner, Nicolas, and Nourrigat, Jean. "Lower bounds for pseudo-differential operators." Annales de l'institut Fourier 40.3 (1990): 657-682. <http://eudml.org/doc/74891>.

@article{Lerner1990,
abstract = {This paper contains some new results on lower bounds for pseudo-differential operators whose symbols do not remain positive. Non-negativity of averages of the symbol on canonical images of the unit ball is sufficient to get a Gårding type inequality for Schrödinger operators with magnetic potential and one dimensional pseudo-differential operators.},
author = {Lerner, Nicolas, Nourrigat, Jean},
journal = {Annales de l'institut Fourier},
keywords = {nonpositive symbol; Gårding’s inequality; lower bounds; magnetic potential},
language = {eng},
number = {3},
pages = {657-682},
publisher = {Association des Annales de l'Institut Fourier},
title = {Lower bounds for pseudo-differential operators},
url = {http://eudml.org/doc/74891},
volume = {40},
year = {1990},
}

TY - JOUR
AU - Lerner, Nicolas
AU - Nourrigat, Jean
TI - Lower bounds for pseudo-differential operators
JO - Annales de l'institut Fourier
PY - 1990
PB - Association des Annales de l'Institut Fourier
VL - 40
IS - 3
SP - 657
EP - 682
AB - This paper contains some new results on lower bounds for pseudo-differential operators whose symbols do not remain positive. Non-negativity of averages of the symbol on canonical images of the unit ball is sufficient to get a Gårding type inequality for Schrödinger operators with magnetic potential and one dimensional pseudo-differential operators.
LA - eng
KW - nonpositive symbol; Gårding’s inequality; lower bounds; magnetic potential
UR - http://eudml.org/doc/74891
ER -

References

top
  1. [1] A. CORDOBA, C. FEFFERMAN, Wave packets and Fourier integral operators, Comm. PDE, 3, 11 (1978), 979-1005. Zbl0389.35046MR80a:35117
  2. [2] C.L. FEFFERMAN, The uncertainty principle, Bull. AMS, 9 (1983), 129-206. Zbl0526.35080MR85f:35001
  3. [3] C. FEFFERMAN, D.H. PHONG, On positivity of pseudo-differential operators, Proc. Natl. Ac. Sc. USA, 75 (1978), 4673-4674. Zbl0391.35062MR80b:47064
  4. [4] C. FEFFERMAN, D.H. PHONG, On the lowest eigenvalue of a pseudo-differential operator, Proc. Natl. Ac. Sc. USA, 76 (1979), 6055-6056. Zbl0434.35071MR81d:47032
  5. [5] C. FEFFERMAN, D.H. PHONG, On the asymptotic eigenvalue distribution, Proc. Natl. Ac. Sc. USA, 77 (1980), 5622-5625. Zbl0443.35082MR82h:35101
  6. [6] C. FEFFERMAN, D.H. PHONG, The uncertainty principle and sharp Garding inequalities, CPAM, 34 (1981), 285-331. Zbl0458.35099MR82j:35140
  7. [7] C. FEFFERMAN, D.H. PHONG, Symplectic geometry and positivity of pseudo-differential operators, Proc. Natl. Ac. Sc. USA, 79 (1982), 710-713. Zbl0553.35089MR83f:35108
  8. [8] B. HELFFER, J. NOURRIGAT, Hypoellipticité maximale pour des opérateurs polynômes de champs de vecteurs, Progress in Math. 58, Birkhauser, 1985. Zbl0568.35003MR88i:35029
  9. [9] L. HÖRMANDER, Pseudo-differential operators and non-elliptic boundary problems, Ann. of Math., 83 (1966), 129-209. Zbl0132.07402MR38 #1387
  10. [10] L. HÖRMANDER, The Weyl calculus of pseudo-differential operators, CPAM, 32 (1979), 359-443. Zbl0388.47032
  11. [11] L. HÖRMANDER, The analysis of linear partial differential operators, four volumes, Berlin, Springer, 1985. Zbl0601.35001
  12. [12] P.D. LAX, L. NIRENBERG, On stability for difference schemes : a sharp form of Garding's inequality, CPAM 19 (1966), 473-492. Zbl0185.22801MR34 #6352
  13. [13] A. MOHAMED, J. NOURRIGAT, Encadrement du N(λ) pour un opérateur de Schrödinger avec des champs électromagnétiques, to appear J. Math. Pures Appl. Zbl0725.35068
  14. [14] J. NOURRIGAT, Subelliptic systems, to appear in Comm. PDE. Zbl0723.35089

Citations in EuDML Documents

top
  1. Ronan Pouliquen, Lower bounds for Schrödinger operators in H¹(ℝ)
  2. Jean-Michel Bony, Sommes de carrés de fonctions dérivables
  3. Frédéric Hérau, Fefferman's SAK principle in one dimension
  4. Jean-Michel Bony, Décomposition des fonctions positives en sommes de carrés
  5. Nicolas Lerner, Opérateurs pseudo-différentiels et capacités symplectiques
  6. Bernard Helffer, Remarks on decay of correlations and Witten laplacians III. Application to logarithmic Sobolev inequalities

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.