Motives over totally real fields and p -adic L -functions

Alexei A. Panchishkin

Annales de l'institut Fourier (1994)

  • Volume: 44, Issue: 4, page 989-1023
  • ISSN: 0373-0956

Abstract

top
Special values of certain L functions of the type L ( M , s ) are studied where M is a motive over a totally real field F with coefficients in another field T , and L ( M , s ) = 𝔭 L 𝔭 ( M , 𝒩 𝔭 - s ) is an Euler product 𝔭 running through maximal ideals of the maximal order 𝒪 F of F and L 𝔭 ( M , X ) - 1 = ( 1 - α ( 1 ) ( 𝔭 ) X ) · ( 1 - α ( 2 ) ( 𝔭 ) X ) · ... · ( 1 - α ( d ) ( 𝔭 ) X ) = 1 + A 1 ( 𝔭 ) X + ... + A d ( 𝔭 ) X d being a polynomial with coefficients in T . Using the Newton and the Hodge polygons of M one formulate a conjectural criterium for the existence of a p -adic analytic continuation of the special values. This conjecture is verified in a number of cases related to Hilbert modular forms.

How to cite

top

Panchishkin, Alexei A.. "Motives over totally real fields and $p$-adic $L$-functions." Annales de l'institut Fourier 44.4 (1994): 989-1023. <http://eudml.org/doc/75097>.

@article{Panchishkin1994,
abstract = {Special values of certain $L$ functions of the type $L(M,s)$ are studied where $M$ is a motive over a totally real field $F$ with coefficients in another field $T$, and\begin\{\}L(M,s)=\prod \_\{\frak p\} L\_\{\frak p\} (M,\{\cal N\}\{\frak p\}^\{-s\})\end\{\}is an Euler product $\{\frak p\}$ running through maximal ideals of the maximal order $\{\cal O\}_F$ of $F$ and\begin\{align\} L\_\{\frak p\}(M,X)^\{-1\}& =(1-\alpha ^\{(1)\} (\{\frak p\})X)\cdot (1-\alpha ^\{(2)\}(\{\frak p\})X)\cdot \ldots \{\} \cdot (1-\alpha (d) (\{\frak p\})X)\\ & =1+A\_1(\{\frak p\})X + \ldots \{\}+ A\_d(\{\frak p\})X^d\end\{align\}being a polynomial with coefficients in $T$. Using the Newton and the Hodge polygons of $M$ one formulate a conjectural criterium for the existence of a $p$-adic analytic continuation of the special values. This conjecture is verified in a number of cases related to Hilbert modular forms.},
author = {Panchishkin, Alexei A.},
journal = {Annales de l'institut Fourier},
keywords = {motives; Newton polygon; Hodge polygon; -adic -function; critical values; periods; Hilbert modular forms; -adic analytic continuation; special values},
language = {eng},
number = {4},
pages = {989-1023},
publisher = {Association des Annales de l'Institut Fourier},
title = {Motives over totally real fields and $p$-adic $L$-functions},
url = {http://eudml.org/doc/75097},
volume = {44},
year = {1994},
}

TY - JOUR
AU - Panchishkin, Alexei A.
TI - Motives over totally real fields and $p$-adic $L$-functions
JO - Annales de l'institut Fourier
PY - 1994
PB - Association des Annales de l'Institut Fourier
VL - 44
IS - 4
SP - 989
EP - 1023
AB - Special values of certain $L$ functions of the type $L(M,s)$ are studied where $M$ is a motive over a totally real field $F$ with coefficients in another field $T$, and\begin{}L(M,s)=\prod _{\frak p} L_{\frak p} (M,{\cal N}{\frak p}^{-s})\end{}is an Euler product ${\frak p}$ running through maximal ideals of the maximal order ${\cal O}_F$ of $F$ and\begin{align} L_{\frak p}(M,X)^{-1}& =(1-\alpha ^{(1)} ({\frak p})X)\cdot (1-\alpha ^{(2)}({\frak p})X)\cdot \ldots {} \cdot (1-\alpha (d) ({\frak p})X)\\ & =1+A_1({\frak p})X + \ldots {}+ A_d({\frak p})X^d\end{align}being a polynomial with coefficients in $T$. Using the Newton and the Hodge polygons of $M$ one formulate a conjectural criterium for the existence of a $p$-adic analytic continuation of the special values. This conjecture is verified in a number of cases related to Hilbert modular forms.
LA - eng
KW - motives; Newton polygon; Hodge polygon; -adic -function; critical values; periods; Hilbert modular forms; -adic analytic continuation; special values
UR - http://eudml.org/doc/75097
ER -

References

top
  1. [AmV] Y. AMICE, J. VÉLU, Distributions p-adiques associées aux séries de Hecke, Journées Arithmétiques de Bordeaux (Conf. Univ. Bordeaux, 1974), Astérisque n°24/25, Soc. Math. France, Paris, (1975), 119-131. Zbl0332.14010MR51 #12709
  2. [Ba] D. BARSKY, Fonctions zeta p-adiques d'une classe de rayon des corps de nombres totalement réels, Groupe d'Étude d'Analyse Ultramétrique (Y. Amice, G. Christol, P.Robba), 5e année, 1977/1978, n°16, 23 p. Zbl0406.12008
  3. [Bl1] D. BLASIUS, On the critical values of Hecke L-series, Ann. Math., 124 (1986), 23-63. Zbl0608.10029MR88i:11035
  4. [Bl2] D. BLASIUS, Appendix to Orloff critical values of certain tensor product L-function, Invent. Math., 90 (1987), 181-188. Zbl0625.10022MR88i:11031
  5. [Bl3] D. BLASIUS, A p-adic property of Hodge classes on Abelian variety, in Proceedings of the Joint AMS Summer Conference on Motives, Seattle, July 20-August 2 1991, Seattle, Providence, R.I., 1993. Zbl0821.14028
  6. [BlRo] D. BLASIUS and J.D. ROGAWSKI, Motives for Hilbert modular forms, Invent. Math., 114 (1993), 55-87. Zbl0829.11028MR94i:11033
  7. [Ca] H. CARAYOL, Sur les représentations p-adiques associées aux formes modulaires de Hilbert, Ann. Sci. École Norm. Sup. (4), 19 (1986), 409-468. Zbl0616.10025MR89c:11083
  8. [Cass-N] P. CASSOU-NOGUÈS, Valeurs aux entiers négatifs des fonctions zeta et fonctions zeta p-adiques, Invent. Math., 51 (1979), 29-59. Zbl0408.12015MR80h:12009b
  9. [Co] J. COATES, On p-adic L-functions, Sém. Bourbaki, 40ème année, 1987-1988, Astérisque n°701 (1989), 177-178. Zbl0706.11064
  10. [CoPe-Ri] J. COATES, B. PERRIN-RIOU, On p-adic L-functions attached to motives over Q, Advanced Studies in Pure Math., 17 (1989), 23-54. Zbl0783.11039MR92j:11060a
  11. [CoSch] J. COATES, C.-G. SCHMIDT, Iwasawa theory for the symmetric square of an elliptic curve, J. Reine Angew. Math., 375/376 (1987), 104-156. Zbl0609.14013MR88i:11077
  12. [Da] A. DABROWSKI, p-adic L-functions of Hilbert modular forms, Ann. Inst. Fourier (Grenoble), 44-4 (1994). Zbl0808.11035MR96b:11065
  13. [De1] P. DELIGNE, Formes modulaires et représentations l-adiques, Sém. Bourb. 1968/1969, exp. n°335. Springer-Verlag, Lect. Notes in Math., 179 (1971), 139-172. Zbl0206.49901
  14. [De2] P. DELIGNE, La conjecture de Weil. I, Publ. Math. IHES, 43 (1974), 273-307. Zbl0287.14001MR49 #5013
  15. [De3] P. DELIGNE, Valeurs de fonctions L et périodes d'intégrales, Proc. Symp. Pure Math AMS, 33 (part 2) (1979), 313-342. Zbl0449.10022MR81d:12009
  16. [DeR] P. DELIGNE, K.A. RIBET, Values of abelian L-functions at negative integers over totally real fields, Invent. Math., 59 (1980), 227-286. Zbl0434.12009MR81m:12019
  17. [H] S. HARAN, p-adic L-functions for modular forms, Compos. Math., 62 (1986), 31-46. Zbl0618.10027MR88k:11036
  18. [Ha1] M. HARRIS, Arithmetical vector bundles and automorphic forms on Shimura varieties. I, Invent. Math., 59 (1985), 151-189. Zbl0598.14019
  19. [Ha2] M. HARRIS, Period invariants of Hilbert modular forms, I. Lecture Notes in Math., 1447 (1990), 155-200. Zbl0716.11020MR91j:11031
  20. [Ha3] M. HARRIS, Hodge-de Rham structures and periods of automorphic forms, in Proceedings of the Joint AMS Summer Conference on Motives, Seattle, July 20-August 2 1991, Seattle, Providence, R.I., 1993. 
  21. [Hi1] H. HIDA, A p-adic measure attached to the zeta functions associated with two elliptic cusp forms. I, Invent. Math., 79 (1985), 159-195. Zbl0573.10020MR86m:11097
  22. [Hi2] H. HIDA, Galois representations into GL2(Zp[[X]]) attached to ordinary cusp forms, Invent. Math., 85 (1986), 545-613. Zbl0612.10021MR87k:11049
  23. [Hi3] H. HIDA, On p-adic L-functions of GL(2) x GL(2) over totally real fields, Ann. Inst. Fourier (Grenoble), 40-2 (1991), 311-391. Zbl0725.11025MR93b:11052
  24. [Iw] K. IWASAWA, Lectures on p-adic L-functions, Ann. of Math. Studies, 74, Princeton University Press, 1972. Zbl0236.12001MR50 #12974
  25. [Ja] U. JANNSEN, Mixed motives and algebraic K-theory, Springer-Verlag, Lecture Notes in Math., 1400 (1990). Zbl0691.14001
  26. [Ka1] N.M. KATZ, p-adic interpolation of real analytic Eisenstein series, Ann. of Math., 104 (1976), 459-571. Zbl0354.14007MR58 #22071
  27. [Ka2] N.M. KATZ, The Eisenstein measure and p-adic interpolation, Amer. J. Math., 99 (1977), 238-311. Zbl0375.12022MR58 #5602
  28. [Ka3] N.M. KATZ, p-adic L-functions for CM-fields, Invent. Math., 48 (1978), 199-297. Zbl0417.12003MR80h:10039
  29. [Kl1] H. KLINGEN, Über die Werte Dedekindscher Zetafunktionen, Math. Ann., 145 (1962), 265-272. Zbl0101.03002MR24 #A3138
  30. [Kl2] H. KLINGEN, Über den arithmetischen Charakter der Fourier-koefficienten von Modulformen, Math. Ann., 147 (1962), 176-188. Zbl0104.26502MR25 #2041
  31. [Ko1] N. KOBLITZ, p-adic numbers, p-adic analysis and zeta functions, 2nd ed. Springer-Verlag, 1984. 
  32. [Ko2] N. KOBLITZ, p-adic analysis: a short course on recent work, London Math. Soc. Lect. Notes Series, 46, Cambridge University Press, London, Cambridge, 1980. Zbl0439.12011MR82c:12014
  33. [KuLe] T. KUBOTA, H.-W. LEOPOLDT, Eine p-adische Theorie der Zetawerte, J. Reine Angew. Math., 214/215 (1964), 328-339. Zbl0186.09103MR29 #1199
  34. [Kurč] P.F. KURČANOV, Local measures connected with cusp forms of Jacquet-Langlands over CM-fields, Mat. Sbornik, 108 (1979), 483-503 (in Russian). Zbl0417.12004
  35. [Man1] Y.I. MANIN, Cyclotomic fields and modular curves, Uspekhi Mat. Nauk, 26 (1971), 7-78 (in Russian). Zbl0266.14012
  36. [Man2] Y.I. MANIN, Cusp forms and zeta functions of modular curves, Izvestija Akad. Nauk. Ser. Matem., 36 (1972), 19-66 (in Russian). 
  37. [Man3] Y.I. MANIN, Explicit formulas for the eigenvalues of Hecke operators, Acta Arithm., 24 (1973), 239-249. Zbl0273.10018MR48 #3886
  38. [Man4] Y.I. MANIN, Periods of cusp forms and p-adic Hecke series, Mat. Sbornik, 92 (1973), 378-401 (in Russian). Zbl0293.14007MR49 #10638
  39. [Man5] Y.I. MANIN, The values of p-adic Hecke series at integer points of the critical strip, Mat. Sbornik, 93 (1974), 621-626 (in Russian). 
  40. [Man6] Y.I. MANIN, Non-Archimedean integration and p-adic L- functions of Jacquet-Langlands, Uspekhi Mat. Nauk, 31 (1976), 5-54 (in Russian). Zbl0336.12007
  41. [Man7] Y.I. MANIN, Modular forms and number theory, Proc. Int. Congr. Math. Helsinki, (1978), 177-186. Zbl0421.10016
  42. [ManPa] Y.I. MANIN, A.A. PANCHISHKIN, Convolutions of Hecke series and their values at integral points. Mat. Sbornik, 104 (1977), 617-651 (in Russian). Zbl0392.10028
  43. [Maz1] B. MAZUR, On the special values of L-functions, Invent. Math., 55 (1979), 207-240. Zbl0426.14009MR82e:14033
  44. [Maz2] B. MAZUR, Modular curves and arithmetic, Proc. Int. Congr. Math. Warszawa, 16-24 August 1982, North Holland, Amsterdam (1984), 185-211. Zbl0597.14023
  45. [MazSD] B. MAZUR, H.P.F. SWINNERTON-DYER, Arithmetic of Weil curves, Invent. Math., 25 (1974), 1-61. Zbl0281.14016MR50 #7152
  46. [MazW1] B. MAZUR, A. WILES, Analogies between function fields and number fields, Am. J. Math., 105 (1983), 507-521. Zbl0531.12015MR84g:12003
  47. [MazW2] B. MAZUR, A. WILES, Class fields of Abelian extensions of Q, Invent. Math., 76 (1984), 179-330. Zbl0545.12005MR85m:11069
  48. [MazW3] B. MAZUR, A. WILES, On p-adic analytic families of Galois representations, Compos. Math., 59 (1986), 231-264. Zbl0654.12008MR88e:11048
  49. [Miy] T. MIYAKE, On automorphic forms on GL2 and Hecke operators, Ann. of Math., 94 (1971), 174-189. Zbl0215.37301MR45 #8607
  50. [My] MY VINH QUANG, Convolutions p-adiques non bornées de formes modulaires de Hilbert, C.R. Acad. Sci. Paris Sér. I Math., 315 n°11 (1992), 1121-1124. Zbl0779.11025MR93m:11038
  51. [Oda] T. ODA, Periods of Hilbert modular surfaces, Boston, Birkhäuser, Progress in Math., 19 (1982). Zbl0489.14014MR83k:10057
  52. [Oh] M. OHTA, On the zeta-functions of an Abelian scheme over the Shimura curve, Japan J. of Math., 9 (1983), 1-26. Zbl0527.10023MR85j:11067
  53. [Pa1] A.A. PANCHISHKIN, Symmetric squares of Hecke series and their values at integral points, Mat. Sbornik, 108 (1979), 393-417 (in Russian). Zbl0408.10015MR80f:10035
  54. [Pa2] A.A. PANCHISHKIN, On p-adic Hecke series, in “Algebra” (Ed. by A. I. Kostrikin), Moscow Univ. Press (1980), 68-71 (in Russian). Zbl0472.10029
  55. [Pa3] A.A. PANCHISHKIN, Complex valued measures attached to Euler products, Trudy Sem. Petrovskogo, 7 (1981), 239-244 (in Russian). Zbl0496.10016MR83g:12016
  56. [Pa4] A.A. PANCHISHKIN, Modular forms, in the series “Algebra. Topology. Geometry.” Vol. 19. VINITI Publ., Moscow (1981), 135-180 (in Russian). Zbl0477.10025MR84a:10022
  57. [Pa5] A.A. PANCHISHKIN, Local measures attached to Euler products in number fields, in “Algebra” (Ed. by A. I. Kostrikin), Moscow Univ. Press (1982), 119-138 (in Russian). Zbl0533.10026MR86h:11106
  58. [Pa6] A.A. PANCHISHKIN, Automorphic forms and the functoriality principle, in “Automorphic forms, representations and L-functions”, Mir Publ., Moscow (1984), 249-286 (in Russian). 
  59. [Pa7] A.A. PANCHISHKIN, Le prolongement p-adique analytique de fonctions L de Rankin, C. R. Acad. Sci. Paris, Sér. I Math., 294 (1982), 51-53 ; 227-230. Zbl0501.10028
  60. [Pa8] A.A. PANCHISHKIN, A functional equation of the non-Archimedean Rankin convolution, Duke Math. J., 54 (1987), 77-89. Zbl0633.10028MR89d:11044
  61. [Pa9] A.A. PANCHISHKIN, Non-Archimedean convolutions of Hilbert modular forms, Abstracts of the 19th USSR Algebraic Conference, Septembre 1987, Lvov. vol. 1, 211. 
  62. [Pa10] A.A. PANCHISHKIN, Non-Archimedean Rankin L-functions and their functional equations, Izvestija Akad. Nauk., Ser. Matem., 52 (1988), 336-354 (in Russian). Zbl0656.10020MR89j:11046
  63. [Pa11] A.A. PANCHISHKIN, Convolutions of Hilbert modular forms and their non-Archimedean analogues, Mat. Sbornik, 136 (1988), 574-587 (in Russian). Zbl0656.10021MR89k:11033
  64. [Pa12] A.A. PANCHISHKIN, Non-Archimedean automorphic zeta-functions, Moscow University Press, (1988), 166p. Zbl0667.10017
  65. [Pan13] A.A. PANCHISHKIN, Convolutions of Hilbert modular forms, motives and p-adic zeta functions, preprint MPI, Bonn, 43 (1990). 
  66. [Pan14] A.A. PANCHISHKIN, Non-Archimedean L-functions associated with Siegel and Hilbert modular forms, Lecture Notes in Math., 1471, Springer-Verlag, (1991), 166 p. Zbl0732.11026MR93a:11044
  67. [Pa15] A.A. PANCHISHKIN, Admissible Non-Archimedean standard zeta functions of Siegel modular forms, Proceedings of the Joint AMS Summer Conference on Motives, Seattle, July 20-August 2 1991, Seattle, Providence, R.I., vol. 2 (1993), 251-292. Zbl0837.11029MR95j:11043
  68. [Ran1] R.A. RANKIN, Contribution to the theory of Ramanujan's function τ(n) and similar arithmetical functions. I.II, Proc. Camb. Phil. Soc., 35 (1939), 351-372. Zbl0021.39201MR1,69dJFM65.0353.01
  69. [Ran2] R.A. RANKIN, The scalar product of modular forms, Proc. London Math., Soc., 2 (1952), 198-217. Zbl0049.33904MR14,139c
  70. [RoTu] J.D. ROGAWSKI, J.B. TUNNEL, On Artin L-functions associated to Hilbert modular forms, Invent. Math., 74 (1983), 1-42. Zbl0523.12009MR85i:11044
  71. [Schm1] C.-G. SCHMIDT, The p-adic L-functions attached to Rankin convolutions of modular forms, J. Reine Angew. Math., 368 (1986), 201-220. Zbl0585.10020MR88e:11038
  72. [Schm2] C.-G. SCHMIDT, p-adic measures attached to automorphic representations of GL(3), Invent. Math., 92 (1988), 597-631. Zbl0656.10023MR90f:11032
  73. [Scho] A.J. SCHOLL, Motives for modular forms, Invent. Math., 100 (1990), 419-430. Zbl0760.14002MR91e:11054
  74. [Shi1] G. SHIMURA, Introduction to the arithmetic theory of automorphic functions, Princeton Univ. Press, 1971. Zbl0221.10029
  75. [Shi2] G. SHIMURA, On the holomorphy of certain Dirichlet series, Proc. Lond. Math. Soc., 31 (1975), 79-98. Zbl0311.10029MR52 #3064
  76. [Shi3] G. SHIMURA, The special values of the zeta functions associated with cusp forms, Comm. Pure Appl. Math., 29 (1976), 783-804. Zbl0348.10015MR55 #7925
  77. [Shi4] G. SHIMURA, On the periods of modular forms, Math. Annalen, 229 (1977), 211-221. Zbl0363.10019MR57 #3080
  78. [Shi5] G. SHIMURA, On certain reciprocity laws for theta functions and modular forms, Acta Math., 141 (1978), 35-71. Zbl0402.10030MR58 #10757
  79. [Shi6] G. SHIMURA, The special values of zeta functions associated with Hilbert modular forms, Duke Math. J., 45 (1978), 637-679. Zbl0394.10015MR80a:10043
  80. [Shi7] G. SHIMURA, Algebraic relations between critical values of zeta functions and inner products, Amer. J. Math., 105 (1983), 253-285. Zbl0518.10032MR84j:10038
  81. [Shi9] G. SHIMURA, On Eisenstein series, Duke Math. J., 50 (1983), 417-476. Zbl0519.10019MR84k:10019
  82. [Shi10] G. SHIMURA, On the critical values of certain Dirichlet series and the periods of automorphic forms, Invent. Math., 94 (1988), 245-305. Zbl0656.10018MR90e:11069
  83. [Sie] C.-L. SIEGEL, Über die Fourierschen Koeffizienten von Modulformen, Nachr. Acad. Wiss. Göttingen. II. Math.-Phys. Kl., 3 (1970), 15-56. Zbl0225.10031MR44 #2706
  84. [Ta] R. TAYLOR, On Galois representations associated to Hilbert modular forms, Invent. Math., 98 (1989), 265-280. Zbl0705.11031MR90m:11176
  85. [V1] M.M. VIŠIK, Non-Archimedean measures associated with Dirichlet series, Mat. Sbornik, 99 (1976), 248-260. 
  86. [V2] M.M. VIŠIK, Non-Archimedean spectral theory, in the series “Modern Problems of Mathematics”, Moscow, VINITI Publ., 25 (1984), 51-114. 
  87. [Wa] L. WASHINGTON, Introduction to cyclotomic fields, Springer-Verlag, N.Y. e.a., 1982. Zbl0484.12001MR85g:11001
  88. [Wi] A. WILES, The Iwasawa conjecture for totally real fields, Ann. Math., 131 (1990), 493-540. Zbl0719.11071MR91i:11163
  89. [Yo] H. YOSHIDA, On the zeta functions of Shimura varieties and periods of Hilbert modular forms, Duke Math. J., 75, n°1 (1994), 121-191. Zbl0823.11018MR95d:11059

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.