Motives over totally real fields and -adic -functions
Annales de l'institut Fourier (1994)
- Volume: 44, Issue: 4, page 989-1023
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topPanchishkin, Alexei A.. "Motives over totally real fields and $p$-adic $L$-functions." Annales de l'institut Fourier 44.4 (1994): 989-1023. <http://eudml.org/doc/75097>.
@article{Panchishkin1994,
abstract = {Special values of certain $L$ functions of the type $L(M,s)$ are studied where $M$ is a motive over a totally real field $F$ with coefficients in another field $T$, and\begin\{\}L(M,s)=\prod \_\{\frak p\} L\_\{\frak p\} (M,\{\cal N\}\{\frak p\}^\{-s\})\end\{\}is an Euler product $\{\frak p\}$ running through maximal ideals of the maximal order $\{\cal O\}_F$ of $F$ and\begin\{align\} L\_\{\frak p\}(M,X)^\{-1\}& =(1-\alpha ^\{(1)\} (\{\frak p\})X)\cdot (1-\alpha ^\{(2)\}(\{\frak p\})X)\cdot \ldots \{\} \cdot (1-\alpha (d) (\{\frak p\})X)\\ & =1+A\_1(\{\frak p\})X + \ldots \{\}+ A\_d(\{\frak p\})X^d\end\{align\}being a polynomial with coefficients in $T$. Using the Newton and the Hodge polygons of $M$ one formulate a conjectural criterium for the existence of a $p$-adic analytic continuation of the special values. This conjecture is verified in a number of cases related to Hilbert modular forms.},
author = {Panchishkin, Alexei A.},
journal = {Annales de l'institut Fourier},
keywords = {motives; Newton polygon; Hodge polygon; -adic -function; critical values; periods; Hilbert modular forms; -adic analytic continuation; special values},
language = {eng},
number = {4},
pages = {989-1023},
publisher = {Association des Annales de l'Institut Fourier},
title = {Motives over totally real fields and $p$-adic $L$-functions},
url = {http://eudml.org/doc/75097},
volume = {44},
year = {1994},
}
TY - JOUR
AU - Panchishkin, Alexei A.
TI - Motives over totally real fields and $p$-adic $L$-functions
JO - Annales de l'institut Fourier
PY - 1994
PB - Association des Annales de l'Institut Fourier
VL - 44
IS - 4
SP - 989
EP - 1023
AB - Special values of certain $L$ functions of the type $L(M,s)$ are studied where $M$ is a motive over a totally real field $F$ with coefficients in another field $T$, and\begin{}L(M,s)=\prod _{\frak p} L_{\frak p} (M,{\cal N}{\frak p}^{-s})\end{}is an Euler product ${\frak p}$ running through maximal ideals of the maximal order ${\cal O}_F$ of $F$ and\begin{align} L_{\frak p}(M,X)^{-1}& =(1-\alpha ^{(1)} ({\frak p})X)\cdot (1-\alpha ^{(2)}({\frak p})X)\cdot \ldots {} \cdot (1-\alpha (d) ({\frak p})X)\\ & =1+A_1({\frak p})X + \ldots {}+ A_d({\frak p})X^d\end{align}being a polynomial with coefficients in $T$. Using the Newton and the Hodge polygons of $M$ one formulate a conjectural criterium for the existence of a $p$-adic analytic continuation of the special values. This conjecture is verified in a number of cases related to Hilbert modular forms.
LA - eng
KW - motives; Newton polygon; Hodge polygon; -adic -function; critical values; periods; Hilbert modular forms; -adic analytic continuation; special values
UR - http://eudml.org/doc/75097
ER -
References
top- [AmV] Y. AMICE, J. VÉLU, Distributions p-adiques associées aux séries de Hecke, Journées Arithmétiques de Bordeaux (Conf. Univ. Bordeaux, 1974), Astérisque n°24/25, Soc. Math. France, Paris, (1975), 119-131. Zbl0332.14010MR51 #12709
- [Ba] D. BARSKY, Fonctions zeta p-adiques d'une classe de rayon des corps de nombres totalement réels, Groupe d'Étude d'Analyse Ultramétrique (Y. Amice, G. Christol, P.Robba), 5e année, 1977/1978, n°16, 23 p. Zbl0406.12008
- [Bl1] D. BLASIUS, On the critical values of Hecke L-series, Ann. Math., 124 (1986), 23-63. Zbl0608.10029MR88i:11035
- [Bl2] D. BLASIUS, Appendix to Orloff critical values of certain tensor product L-function, Invent. Math., 90 (1987), 181-188. Zbl0625.10022MR88i:11031
- [Bl3] D. BLASIUS, A p-adic property of Hodge classes on Abelian variety, in Proceedings of the Joint AMS Summer Conference on Motives, Seattle, July 20-August 2 1991, Seattle, Providence, R.I., 1993. Zbl0821.14028
- [BlRo] D. BLASIUS and J.D. ROGAWSKI, Motives for Hilbert modular forms, Invent. Math., 114 (1993), 55-87. Zbl0829.11028MR94i:11033
- [Ca] H. CARAYOL, Sur les représentations p-adiques associées aux formes modulaires de Hilbert, Ann. Sci. École Norm. Sup. (4), 19 (1986), 409-468. Zbl0616.10025MR89c:11083
- [Cass-N] P. CASSOU-NOGUÈS, Valeurs aux entiers négatifs des fonctions zeta et fonctions zeta p-adiques, Invent. Math., 51 (1979), 29-59. Zbl0408.12015MR80h:12009b
- [Co] J. COATES, On p-adic L-functions, Sém. Bourbaki, 40ème année, 1987-1988, Astérisque n°701 (1989), 177-178. Zbl0706.11064
- [CoPe-Ri] J. COATES, B. PERRIN-RIOU, On p-adic L-functions attached to motives over Q, Advanced Studies in Pure Math., 17 (1989), 23-54. Zbl0783.11039MR92j:11060a
- [CoSch] J. COATES, C.-G. SCHMIDT, Iwasawa theory for the symmetric square of an elliptic curve, J. Reine Angew. Math., 375/376 (1987), 104-156. Zbl0609.14013MR88i:11077
- [Da] A. DABROWSKI, p-adic L-functions of Hilbert modular forms, Ann. Inst. Fourier (Grenoble), 44-4 (1994). Zbl0808.11035MR96b:11065
- [De1] P. DELIGNE, Formes modulaires et représentations l-adiques, Sém. Bourb. 1968/1969, exp. n°335. Springer-Verlag, Lect. Notes in Math., 179 (1971), 139-172. Zbl0206.49901
- [De2] P. DELIGNE, La conjecture de Weil. I, Publ. Math. IHES, 43 (1974), 273-307. Zbl0287.14001MR49 #5013
- [De3] P. DELIGNE, Valeurs de fonctions L et périodes d'intégrales, Proc. Symp. Pure Math AMS, 33 (part 2) (1979), 313-342. Zbl0449.10022MR81d:12009
- [DeR] P. DELIGNE, K.A. RIBET, Values of abelian L-functions at negative integers over totally real fields, Invent. Math., 59 (1980), 227-286. Zbl0434.12009MR81m:12019
- [H] S. HARAN, p-adic L-functions for modular forms, Compos. Math., 62 (1986), 31-46. Zbl0618.10027MR88k:11036
- [Ha1] M. HARRIS, Arithmetical vector bundles and automorphic forms on Shimura varieties. I, Invent. Math., 59 (1985), 151-189. Zbl0598.14019
- [Ha2] M. HARRIS, Period invariants of Hilbert modular forms, I. Lecture Notes in Math., 1447 (1990), 155-200. Zbl0716.11020MR91j:11031
- [Ha3] M. HARRIS, Hodge-de Rham structures and periods of automorphic forms, in Proceedings of the Joint AMS Summer Conference on Motives, Seattle, July 20-August 2 1991, Seattle, Providence, R.I., 1993.
- [Hi1] H. HIDA, A p-adic measure attached to the zeta functions associated with two elliptic cusp forms. I, Invent. Math., 79 (1985), 159-195. Zbl0573.10020MR86m:11097
- [Hi2] H. HIDA, Galois representations into GL2(Zp[[X]]) attached to ordinary cusp forms, Invent. Math., 85 (1986), 545-613. Zbl0612.10021MR87k:11049
- [Hi3] H. HIDA, On p-adic L-functions of GL(2) x GL(2) over totally real fields, Ann. Inst. Fourier (Grenoble), 40-2 (1991), 311-391. Zbl0725.11025MR93b:11052
- [Iw] K. IWASAWA, Lectures on p-adic L-functions, Ann. of Math. Studies, 74, Princeton University Press, 1972. Zbl0236.12001MR50 #12974
- [Ja] U. JANNSEN, Mixed motives and algebraic K-theory, Springer-Verlag, Lecture Notes in Math., 1400 (1990). Zbl0691.14001
- [Ka1] N.M. KATZ, p-adic interpolation of real analytic Eisenstein series, Ann. of Math., 104 (1976), 459-571. Zbl0354.14007MR58 #22071
- [Ka2] N.M. KATZ, The Eisenstein measure and p-adic interpolation, Amer. J. Math., 99 (1977), 238-311. Zbl0375.12022MR58 #5602
- [Ka3] N.M. KATZ, p-adic L-functions for CM-fields, Invent. Math., 48 (1978), 199-297. Zbl0417.12003MR80h:10039
- [Kl1] H. KLINGEN, Über die Werte Dedekindscher Zetafunktionen, Math. Ann., 145 (1962), 265-272. Zbl0101.03002MR24 #A3138
- [Kl2] H. KLINGEN, Über den arithmetischen Charakter der Fourier-koefficienten von Modulformen, Math. Ann., 147 (1962), 176-188. Zbl0104.26502MR25 #2041
- [Ko1] N. KOBLITZ, p-adic numbers, p-adic analysis and zeta functions, 2nd ed. Springer-Verlag, 1984.
- [Ko2] N. KOBLITZ, p-adic analysis: a short course on recent work, London Math. Soc. Lect. Notes Series, 46, Cambridge University Press, London, Cambridge, 1980. Zbl0439.12011MR82c:12014
- [KuLe] T. KUBOTA, H.-W. LEOPOLDT, Eine p-adische Theorie der Zetawerte, J. Reine Angew. Math., 214/215 (1964), 328-339. Zbl0186.09103MR29 #1199
- [Kurč] P.F. KURČANOV, Local measures connected with cusp forms of Jacquet-Langlands over CM-fields, Mat. Sbornik, 108 (1979), 483-503 (in Russian). Zbl0417.12004
- [Man1] Y.I. MANIN, Cyclotomic fields and modular curves, Uspekhi Mat. Nauk, 26 (1971), 7-78 (in Russian). Zbl0266.14012
- [Man2] Y.I. MANIN, Cusp forms and zeta functions of modular curves, Izvestija Akad. Nauk. Ser. Matem., 36 (1972), 19-66 (in Russian).
- [Man3] Y.I. MANIN, Explicit formulas for the eigenvalues of Hecke operators, Acta Arithm., 24 (1973), 239-249. Zbl0273.10018MR48 #3886
- [Man4] Y.I. MANIN, Periods of cusp forms and p-adic Hecke series, Mat. Sbornik, 92 (1973), 378-401 (in Russian). Zbl0293.14007MR49 #10638
- [Man5] Y.I. MANIN, The values of p-adic Hecke series at integer points of the critical strip, Mat. Sbornik, 93 (1974), 621-626 (in Russian).
- [Man6] Y.I. MANIN, Non-Archimedean integration and p-adic L- functions of Jacquet-Langlands, Uspekhi Mat. Nauk, 31 (1976), 5-54 (in Russian). Zbl0336.12007
- [Man7] Y.I. MANIN, Modular forms and number theory, Proc. Int. Congr. Math. Helsinki, (1978), 177-186. Zbl0421.10016
- [ManPa] Y.I. MANIN, A.A. PANCHISHKIN, Convolutions of Hecke series and their values at integral points. Mat. Sbornik, 104 (1977), 617-651 (in Russian). Zbl0392.10028
- [Maz1] B. MAZUR, On the special values of L-functions, Invent. Math., 55 (1979), 207-240. Zbl0426.14009MR82e:14033
- [Maz2] B. MAZUR, Modular curves and arithmetic, Proc. Int. Congr. Math. Warszawa, 16-24 August 1982, North Holland, Amsterdam (1984), 185-211. Zbl0597.14023
- [MazSD] B. MAZUR, H.P.F. SWINNERTON-DYER, Arithmetic of Weil curves, Invent. Math., 25 (1974), 1-61. Zbl0281.14016MR50 #7152
- [MazW1] B. MAZUR, A. WILES, Analogies between function fields and number fields, Am. J. Math., 105 (1983), 507-521. Zbl0531.12015MR84g:12003
- [MazW2] B. MAZUR, A. WILES, Class fields of Abelian extensions of Q, Invent. Math., 76 (1984), 179-330. Zbl0545.12005MR85m:11069
- [MazW3] B. MAZUR, A. WILES, On p-adic analytic families of Galois representations, Compos. Math., 59 (1986), 231-264. Zbl0654.12008MR88e:11048
- [Miy] T. MIYAKE, On automorphic forms on GL2 and Hecke operators, Ann. of Math., 94 (1971), 174-189. Zbl0215.37301MR45 #8607
- [My] MY VINH QUANG, Convolutions p-adiques non bornées de formes modulaires de Hilbert, C.R. Acad. Sci. Paris Sér. I Math., 315 n°11 (1992), 1121-1124. Zbl0779.11025MR93m:11038
- [Oda] T. ODA, Periods of Hilbert modular surfaces, Boston, Birkhäuser, Progress in Math., 19 (1982). Zbl0489.14014MR83k:10057
- [Oh] M. OHTA, On the zeta-functions of an Abelian scheme over the Shimura curve, Japan J. of Math., 9 (1983), 1-26. Zbl0527.10023MR85j:11067
- [Pa1] A.A. PANCHISHKIN, Symmetric squares of Hecke series and their values at integral points, Mat. Sbornik, 108 (1979), 393-417 (in Russian). Zbl0408.10015MR80f:10035
- [Pa2] A.A. PANCHISHKIN, On p-adic Hecke series, in “Algebra” (Ed. by A. I. Kostrikin), Moscow Univ. Press (1980), 68-71 (in Russian). Zbl0472.10029
- [Pa3] A.A. PANCHISHKIN, Complex valued measures attached to Euler products, Trudy Sem. Petrovskogo, 7 (1981), 239-244 (in Russian). Zbl0496.10016MR83g:12016
- [Pa4] A.A. PANCHISHKIN, Modular forms, in the series “Algebra. Topology. Geometry.” Vol. 19. VINITI Publ., Moscow (1981), 135-180 (in Russian). Zbl0477.10025MR84a:10022
- [Pa5] A.A. PANCHISHKIN, Local measures attached to Euler products in number fields, in “Algebra” (Ed. by A. I. Kostrikin), Moscow Univ. Press (1982), 119-138 (in Russian). Zbl0533.10026MR86h:11106
- [Pa6] A.A. PANCHISHKIN, Automorphic forms and the functoriality principle, in “Automorphic forms, representations and L-functions”, Mir Publ., Moscow (1984), 249-286 (in Russian).
- [Pa7] A.A. PANCHISHKIN, Le prolongement p-adique analytique de fonctions L de Rankin, C. R. Acad. Sci. Paris, Sér. I Math., 294 (1982), 51-53 ; 227-230. Zbl0501.10028
- [Pa8] A.A. PANCHISHKIN, A functional equation of the non-Archimedean Rankin convolution, Duke Math. J., 54 (1987), 77-89. Zbl0633.10028MR89d:11044
- [Pa9] A.A. PANCHISHKIN, Non-Archimedean convolutions of Hilbert modular forms, Abstracts of the 19th USSR Algebraic Conference, Septembre 1987, Lvov. vol. 1, 211.
- [Pa10] A.A. PANCHISHKIN, Non-Archimedean Rankin L-functions and their functional equations, Izvestija Akad. Nauk., Ser. Matem., 52 (1988), 336-354 (in Russian). Zbl0656.10020MR89j:11046
- [Pa11] A.A. PANCHISHKIN, Convolutions of Hilbert modular forms and their non-Archimedean analogues, Mat. Sbornik, 136 (1988), 574-587 (in Russian). Zbl0656.10021MR89k:11033
- [Pa12] A.A. PANCHISHKIN, Non-Archimedean automorphic zeta-functions, Moscow University Press, (1988), 166p. Zbl0667.10017
- [Pan13] A.A. PANCHISHKIN, Convolutions of Hilbert modular forms, motives and p-adic zeta functions, preprint MPI, Bonn, 43 (1990).
- [Pan14] A.A. PANCHISHKIN, Non-Archimedean L-functions associated with Siegel and Hilbert modular forms, Lecture Notes in Math., 1471, Springer-Verlag, (1991), 166 p. Zbl0732.11026MR93a:11044
- [Pa15] A.A. PANCHISHKIN, Admissible Non-Archimedean standard zeta functions of Siegel modular forms, Proceedings of the Joint AMS Summer Conference on Motives, Seattle, July 20-August 2 1991, Seattle, Providence, R.I., vol. 2 (1993), 251-292. Zbl0837.11029MR95j:11043
- [Ran1] R.A. RANKIN, Contribution to the theory of Ramanujan's function τ(n) and similar arithmetical functions. I.II, Proc. Camb. Phil. Soc., 35 (1939), 351-372. Zbl0021.39201MR1,69dJFM65.0353.01
- [Ran2] R.A. RANKIN, The scalar product of modular forms, Proc. London Math., Soc., 2 (1952), 198-217. Zbl0049.33904MR14,139c
- [RoTu] J.D. ROGAWSKI, J.B. TUNNEL, On Artin L-functions associated to Hilbert modular forms, Invent. Math., 74 (1983), 1-42. Zbl0523.12009MR85i:11044
- [Schm1] C.-G. SCHMIDT, The p-adic L-functions attached to Rankin convolutions of modular forms, J. Reine Angew. Math., 368 (1986), 201-220. Zbl0585.10020MR88e:11038
- [Schm2] C.-G. SCHMIDT, p-adic measures attached to automorphic representations of GL(3), Invent. Math., 92 (1988), 597-631. Zbl0656.10023MR90f:11032
- [Scho] A.J. SCHOLL, Motives for modular forms, Invent. Math., 100 (1990), 419-430. Zbl0760.14002MR91e:11054
- [Shi1] G. SHIMURA, Introduction to the arithmetic theory of automorphic functions, Princeton Univ. Press, 1971. Zbl0221.10029
- [Shi2] G. SHIMURA, On the holomorphy of certain Dirichlet series, Proc. Lond. Math. Soc., 31 (1975), 79-98. Zbl0311.10029MR52 #3064
- [Shi3] G. SHIMURA, The special values of the zeta functions associated with cusp forms, Comm. Pure Appl. Math., 29 (1976), 783-804. Zbl0348.10015MR55 #7925
- [Shi4] G. SHIMURA, On the periods of modular forms, Math. Annalen, 229 (1977), 211-221. Zbl0363.10019MR57 #3080
- [Shi5] G. SHIMURA, On certain reciprocity laws for theta functions and modular forms, Acta Math., 141 (1978), 35-71. Zbl0402.10030MR58 #10757
- [Shi6] G. SHIMURA, The special values of zeta functions associated with Hilbert modular forms, Duke Math. J., 45 (1978), 637-679. Zbl0394.10015MR80a:10043
- [Shi7] G. SHIMURA, Algebraic relations between critical values of zeta functions and inner products, Amer. J. Math., 105 (1983), 253-285. Zbl0518.10032MR84j:10038
- [Shi9] G. SHIMURA, On Eisenstein series, Duke Math. J., 50 (1983), 417-476. Zbl0519.10019MR84k:10019
- [Shi10] G. SHIMURA, On the critical values of certain Dirichlet series and the periods of automorphic forms, Invent. Math., 94 (1988), 245-305. Zbl0656.10018MR90e:11069
- [Sie] C.-L. SIEGEL, Über die Fourierschen Koeffizienten von Modulformen, Nachr. Acad. Wiss. Göttingen. II. Math.-Phys. Kl., 3 (1970), 15-56. Zbl0225.10031MR44 #2706
- [Ta] R. TAYLOR, On Galois representations associated to Hilbert modular forms, Invent. Math., 98 (1989), 265-280. Zbl0705.11031MR90m:11176
- [V1] M.M. VIŠIK, Non-Archimedean measures associated with Dirichlet series, Mat. Sbornik, 99 (1976), 248-260.
- [V2] M.M. VIŠIK, Non-Archimedean spectral theory, in the series “Modern Problems of Mathematics”, Moscow, VINITI Publ., 25 (1984), 51-114.
- [Wa] L. WASHINGTON, Introduction to cyclotomic fields, Springer-Verlag, N.Y. e.a., 1982. Zbl0484.12001MR85g:11001
- [Wi] A. WILES, The Iwasawa conjecture for totally real fields, Ann. Math., 131 (1990), 493-540. Zbl0719.11071MR91i:11163
- [Yo] H. YOSHIDA, On the zeta functions of Shimura varieties and periods of Hilbert modular forms, Duke Math. J., 75, n°1 (1994), 121-191. Zbl0823.11018MR95d:11059
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.