Vector fields and foliations on compact surfaces of class VII 0

Georges Dloussky; Karl Oeljeklaus

Annales de l'institut Fourier (1999)

  • Volume: 49, Issue: 5, page 1503-1545
  • ISSN: 0373-0956

Abstract

top
It is well-known that minimal compact complex surfaces with b 2 > 0 containing global spherical shells are in the class VII 0 of Kodaira. In fact, there are no other known examples. In this paper we prove that all surfaces with global spherical shells admit a singular holomorphic foliation. The existence of a numerically anticanonical divisor is a necessary condition for the existence of a global holomorphic vector field. Conversely, given the existence of a numerically anticanonical divisor, surfaces with a global vector field lie over a hypersurface in the base of the versal logarithmic deformation.

How to cite

top

Dloussky, Georges, and Oeljeklaus, Karl. "Vector fields and foliations on compact surfaces of class ${\rm VII}_0$." Annales de l'institut Fourier 49.5 (1999): 1503-1545. <http://eudml.org/doc/75392>.

@article{Dloussky1999,
abstract = {It is well-known that minimal compact complex surfaces with $b_\{2\}&gt;0$ containing global spherical shells are in the class VII$\{\}_\{0\}$ of Kodaira. In fact, there are no other known examples. In this paper we prove that all surfaces with global spherical shells admit a singular holomorphic foliation. The existence of a numerically anticanonical divisor is a necessary condition for the existence of a global holomorphic vector field. Conversely, given the existence of a numerically anticanonical divisor, surfaces with a global vector field lie over a hypersurface in the base of the versal logarithmic deformation.},
author = {Dloussky, Georges, Oeljeklaus, Karl},
journal = {Annales de l'institut Fourier},
keywords = {compact complex surface; class VII; holomorphic vector field; singular holomorphic foliation},
language = {eng},
number = {5},
pages = {1503-1545},
publisher = {Association des Annales de l'Institut Fourier},
title = {Vector fields and foliations on compact surfaces of class $\{\rm VII\}_0$},
url = {http://eudml.org/doc/75392},
volume = {49},
year = {1999},
}

TY - JOUR
AU - Dloussky, Georges
AU - Oeljeklaus, Karl
TI - Vector fields and foliations on compact surfaces of class ${\rm VII}_0$
JO - Annales de l'institut Fourier
PY - 1999
PB - Association des Annales de l'Institut Fourier
VL - 49
IS - 5
SP - 1503
EP - 1545
AB - It is well-known that minimal compact complex surfaces with $b_{2}&gt;0$ containing global spherical shells are in the class VII${}_{0}$ of Kodaira. In fact, there are no other known examples. In this paper we prove that all surfaces with global spherical shells admit a singular holomorphic foliation. The existence of a numerically anticanonical divisor is a necessary condition for the existence of a global holomorphic vector field. Conversely, given the existence of a numerically anticanonical divisor, surfaces with a global vector field lie over a hypersurface in the base of the versal logarithmic deformation.
LA - eng
KW - compact complex surface; class VII; holomorphic vector field; singular holomorphic foliation
UR - http://eudml.org/doc/75392
ER -

References

top
  1. [1] P. BAUM, R. BOTT, On the zeroes of meromorphic vector fields, Essais en l'honneur de G. De Rham, (1970), 29-47. Zbl0193.52201MR41 #6248
  2. [2] M. BRUNELLA, Feuilletages holomorphes sur les surfaces complexes compactes, Annales Scient. Ec. Norm. Sup., 4e série, tome 30 (1997), 569-594. Zbl0893.32019MR98i:32051
  3. [3] J. CARRELL, A. HOWARD, C. KOSNIOWSKI, Holomorphic vector fields on complex surfaces, Math. Ann., 204 (1973), 73-81. Zbl0242.14008MR51 #8478
  4. [4] C. CAMACHO, P. SAD, Invariant varieties through singularities of holomorphic vector fields, Annals of Math., 115 (1982), 579-595. Zbl0503.32007MR83m:58062
  5. [5] G. DLOUSSKY, Structure des surfaces de Kato, Mémoire de la S.M.F 112, n° 14 (1984). Zbl0543.32012MR87i:32039
  6. [6] G. DLOUSSKY, Sur la classification des germes d'applications holomorphes contractantes, Math. Ann., 280 (1988), 649-661. Zbl0677.32004MR89g:32042
  7. [7] G. DLOUSSKY, Une construction élémentaire des surfaces d'Inoue-Hirzebruch, Math. Ann., 280 (1988), 663-682. Zbl0617.14025MR89g:32043
  8. [8] G. DLOUSSKY, F. KOHLER, Classification of singular germs of mappings and deformations of compact surfaces of the VII0 class, Ann. Math. Pol., LXX (1998), 49-83. Zbl0930.32013MR99m:32036
  9. [9] G. DLOUSSKY, K. OELJEKLAUS, Surfaces de la classe VII0 et automorphismes de Hénon, C.R.A.S., 328, Série I (1999), 609-612. Zbl0945.32005MR2000a:32037
  10. [10] I. ENOKI, Surfaces of class VII0 with curves, Tôhoku Math. J., 33 (1981), 453-492. Zbl0476.14013MR83g:32028
  11. [11] C. GELLHAUS, P. HEINZNER, Komplexe Flächen mit holomorphen Vektorfeldern, Abh. Math. Sem. Hamburg, 60 (1990), 37-46. Zbl0734.32017MR91k:32027
  12. [12] X. GOMEZ-MONT, Singularités d'équations différentielles, Astérisque 150-151, SMF (1987). Zbl0623.00011
  13. [13] P. GRIFFITH, J. HARRIS, Principles of Algebraic Geometry, Wiley & Sons, 1978. Zbl0408.14001
  14. [14] H. HIRONAKA, Introduction to the theory of infinitesimaly near singular points, Memorias de Mathematica del Instituto “Jorge Juan” 28, Madrid 1974. Zbl0366.32007MR53 #3349
  15. [15] J. HAUSEN, Zur Klassifikation glatter kompakter ℂ*-Flaechen, Math. Ann., 301 (1995), 763-769. Zbl0830.32012MR96a:32051
  16. [16] J.H. HUBBARD, R.W. OBERSTE-VORTH, Hénon mappings in the complex domain I, Pub. Math. IHES, 79 (1994), 5-46. Zbl0839.54029MR96a:58157
  17. [17] M. INOUE, New surfaces with no meromorphic functions II, Complex Analysis and Alg. Geom., 91-106, Iwanami Shoten Pb. (1977). Zbl0365.14011MR56 #683
  18. [18] Ma. KATO, Compact complex manifolds containing “global spherical shells”, Proceedings of the Int. Symp. Alg. Geometry, Kyoto 1977. Kinokuniya Book Store, Tokyo, 1978. Zbl0421.32010
  19. [19] F. KOHLER, Feuilletages holomorphes singuliers sur les surfaces contenant une coquille sphérique globale, Ann. Inst. Fourier, 45-1 (1995), 161-182. Erratum Ann. Inst. Fourier, 46-2 (1996). Zbl0814.57022MR96a:32058
  20. [20] K. KODAIRA, On the structure of compact complex analytic surfaces I, Am. Jour. Math., 86 (1964), 651-698. Zbl0137.17501MR32 #4708
  21. [21] K. KODAIRA, On the structure of compact complex analytic surfaces II, Am. Jour. Math., 88 (1966), 682-721. Zbl0193.37701MR34 #5112
  22. [22] B. KHANEDANI, T. SUWA, First variation of holomorphic forms and some applications, Hokkaido Math. Jour., Vol. XXVI, No. 2 (1997), 323-335. Zbl0897.32013MR98i:32052
  23. [23] Y. KAWAMATA, On deformations of compactifiable complex manifolds, Math. Ann., 235 (1978), 247-265. Zbl0363.32015MR80c:32026
  24. [24] I. NAKAMURA, On surfaces of class VII0 with curves, Invent. Math., 78 (1984), 393-443. Zbl0575.14033MR86e:32034
  25. [25] I. NAKAMURA, On surfaces of class VII0 with curves II, Tohoku Math. J., 42 (1990), 475-516. Zbl0732.14019MR91m:32029
  26. [26] E.H. SPANIER, Algebraic Topology, Mc Graw-Hill, 1966. Zbl0145.43303MR35 #1007
  27. [27] T. SUWA, Indices of holomorphic vector fields relative to invariant curves, Proc. AMS., 123, No.10 (1995), 2989-2997. Zbl0866.32016MR95m:32054

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.