Vector fields and foliations on compact surfaces of class VII 0

Georges Dloussky; Karl Oeljeklaus

Annales de l'institut Fourier (1999)

  • Volume: 49, Issue: 5, page 1503-1545
  • ISSN: 0373-0956

Abstract

top
It is well-known that minimal compact complex surfaces with b 2 > 0 containing global spherical shells are in the class VII 0 of Kodaira. In fact, there are no other known examples. In this paper we prove that all surfaces with global spherical shells admit a singular holomorphic foliation. The existence of a numerically anticanonical divisor is a necessary condition for the existence of a global holomorphic vector field. Conversely, given the existence of a numerically anticanonical divisor, surfaces with a global vector field lie over a hypersurface in the base of the versal logarithmic deformation.

How to cite

top

Dloussky, Georges, and Oeljeklaus, Karl. "Vector fields and foliations on compact surfaces of class ${\rm VII}_0$." Annales de l'institut Fourier 49.5 (1999): 1503-1545. <http://eudml.org/doc/75392>.

@article{Dloussky1999,
abstract = {It is well-known that minimal compact complex surfaces with $b_\{2\}&gt;0$ containing global spherical shells are in the class VII$\{\}_\{0\}$ of Kodaira. In fact, there are no other known examples. In this paper we prove that all surfaces with global spherical shells admit a singular holomorphic foliation. The existence of a numerically anticanonical divisor is a necessary condition for the existence of a global holomorphic vector field. Conversely, given the existence of a numerically anticanonical divisor, surfaces with a global vector field lie over a hypersurface in the base of the versal logarithmic deformation.},
author = {Dloussky, Georges, Oeljeklaus, Karl},
journal = {Annales de l'institut Fourier},
keywords = {compact complex surface; class VII; holomorphic vector field; singular holomorphic foliation},
language = {eng},
number = {5},
pages = {1503-1545},
publisher = {Association des Annales de l'Institut Fourier},
title = {Vector fields and foliations on compact surfaces of class $\{\rm VII\}_0$},
url = {http://eudml.org/doc/75392},
volume = {49},
year = {1999},
}

TY - JOUR
AU - Dloussky, Georges
AU - Oeljeklaus, Karl
TI - Vector fields and foliations on compact surfaces of class ${\rm VII}_0$
JO - Annales de l'institut Fourier
PY - 1999
PB - Association des Annales de l'Institut Fourier
VL - 49
IS - 5
SP - 1503
EP - 1545
AB - It is well-known that minimal compact complex surfaces with $b_{2}&gt;0$ containing global spherical shells are in the class VII${}_{0}$ of Kodaira. In fact, there are no other known examples. In this paper we prove that all surfaces with global spherical shells admit a singular holomorphic foliation. The existence of a numerically anticanonical divisor is a necessary condition for the existence of a global holomorphic vector field. Conversely, given the existence of a numerically anticanonical divisor, surfaces with a global vector field lie over a hypersurface in the base of the versal logarithmic deformation.
LA - eng
KW - compact complex surface; class VII; holomorphic vector field; singular holomorphic foliation
UR - http://eudml.org/doc/75392
ER -

References

top
  1. [1] P. BAUM, R. BOTT, On the zeroes of meromorphic vector fields, Essais en l'honneur de G. De Rham, (1970), 29-47. Zbl0193.52201MR41 #6248
  2. [2] M. BRUNELLA, Feuilletages holomorphes sur les surfaces complexes compactes, Annales Scient. Ec. Norm. Sup., 4e série, tome 30 (1997), 569-594. Zbl0893.32019MR98i:32051
  3. [3] J. CARRELL, A. HOWARD, C. KOSNIOWSKI, Holomorphic vector fields on complex surfaces, Math. Ann., 204 (1973), 73-81. Zbl0242.14008MR51 #8478
  4. [4] C. CAMACHO, P. SAD, Invariant varieties through singularities of holomorphic vector fields, Annals of Math., 115 (1982), 579-595. Zbl0503.32007MR83m:58062
  5. [5] G. DLOUSSKY, Structure des surfaces de Kato, Mémoire de la S.M.F 112, n° 14 (1984). Zbl0543.32012MR87i:32039
  6. [6] G. DLOUSSKY, Sur la classification des germes d'applications holomorphes contractantes, Math. Ann., 280 (1988), 649-661. Zbl0677.32004MR89g:32042
  7. [7] G. DLOUSSKY, Une construction élémentaire des surfaces d'Inoue-Hirzebruch, Math. Ann., 280 (1988), 663-682. Zbl0617.14025MR89g:32043
  8. [8] G. DLOUSSKY, F. KOHLER, Classification of singular germs of mappings and deformations of compact surfaces of the VII0 class, Ann. Math. Pol., LXX (1998), 49-83. Zbl0930.32013MR99m:32036
  9. [9] G. DLOUSSKY, K. OELJEKLAUS, Surfaces de la classe VII0 et automorphismes de Hénon, C.R.A.S., 328, Série I (1999), 609-612. Zbl0945.32005MR2000a:32037
  10. [10] I. ENOKI, Surfaces of class VII0 with curves, Tôhoku Math. J., 33 (1981), 453-492. Zbl0476.14013MR83g:32028
  11. [11] C. GELLHAUS, P. HEINZNER, Komplexe Flächen mit holomorphen Vektorfeldern, Abh. Math. Sem. Hamburg, 60 (1990), 37-46. Zbl0734.32017MR91k:32027
  12. [12] X. GOMEZ-MONT, Singularités d'équations différentielles, Astérisque 150-151, SMF (1987). Zbl0623.00011
  13. [13] P. GRIFFITH, J. HARRIS, Principles of Algebraic Geometry, Wiley & Sons, 1978. Zbl0408.14001
  14. [14] H. HIRONAKA, Introduction to the theory of infinitesimaly near singular points, Memorias de Mathematica del Instituto “Jorge Juan” 28, Madrid 1974. Zbl0366.32007MR53 #3349
  15. [15] J. HAUSEN, Zur Klassifikation glatter kompakter ℂ*-Flaechen, Math. Ann., 301 (1995), 763-769. Zbl0830.32012MR96a:32051
  16. [16] J.H. HUBBARD, R.W. OBERSTE-VORTH, Hénon mappings in the complex domain I, Pub. Math. IHES, 79 (1994), 5-46. Zbl0839.54029MR96a:58157
  17. [17] M. INOUE, New surfaces with no meromorphic functions II, Complex Analysis and Alg. Geom., 91-106, Iwanami Shoten Pb. (1977). Zbl0365.14011MR56 #683
  18. [18] Ma. KATO, Compact complex manifolds containing “global spherical shells”, Proceedings of the Int. Symp. Alg. Geometry, Kyoto 1977. Kinokuniya Book Store, Tokyo, 1978. Zbl0421.32010
  19. [19] F. KOHLER, Feuilletages holomorphes singuliers sur les surfaces contenant une coquille sphérique globale, Ann. Inst. Fourier, 45-1 (1995), 161-182. Erratum Ann. Inst. Fourier, 46-2 (1996). Zbl0814.57022MR96a:32058
  20. [20] K. KODAIRA, On the structure of compact complex analytic surfaces I, Am. Jour. Math., 86 (1964), 651-698. Zbl0137.17501MR32 #4708
  21. [21] K. KODAIRA, On the structure of compact complex analytic surfaces II, Am. Jour. Math., 88 (1966), 682-721. Zbl0193.37701MR34 #5112
  22. [22] B. KHANEDANI, T. SUWA, First variation of holomorphic forms and some applications, Hokkaido Math. Jour., Vol. XXVI, No. 2 (1997), 323-335. Zbl0897.32013MR98i:32052
  23. [23] Y. KAWAMATA, On deformations of compactifiable complex manifolds, Math. Ann., 235 (1978), 247-265. Zbl0363.32015MR80c:32026
  24. [24] I. NAKAMURA, On surfaces of class VII0 with curves, Invent. Math., 78 (1984), 393-443. Zbl0575.14033MR86e:32034
  25. [25] I. NAKAMURA, On surfaces of class VII0 with curves II, Tohoku Math. J., 42 (1990), 475-516. Zbl0732.14019MR91m:32029
  26. [26] E.H. SPANIER, Algebraic Topology, Mc Graw-Hill, 1966. Zbl0145.43303MR35 #1007
  27. [27] T. SUWA, Indices of holomorphic vector fields relative to invariant curves, Proc. AMS., 123, No.10 (1995), 2989-2997. Zbl0866.32016MR95m:32054

NotesEmbed ?

top

You must be logged in to post comments.