Semiclassical analysis of low lying eigenvalues. I. Non-degenerate minima : asymptotic expansions

Barry Simon

Annales de l'I.H.P. Physique théorique (1983)

  • Volume: 38, Issue: 3, page 295-308
  • ISSN: 0246-0211

How to cite

top

Simon, Barry. "Semiclassical analysis of low lying eigenvalues. I. Non-degenerate minima : asymptotic expansions." Annales de l'I.H.P. Physique théorique 38.3 (1983): 295-308. <http://eudml.org/doc/76200>.

@article{Simon1983,
author = {Simon, Barry},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {semiclassical analysis; low lying eigenvalues; non-degenerate minima; asymptotic expansions; Schrödinger operators with multiple wells; quadratic approximation},
language = {eng},
number = {3},
pages = {295-308},
publisher = {Gauthier-Villars},
title = {Semiclassical analysis of low lying eigenvalues. I. Non-degenerate minima : asymptotic expansions},
url = {http://eudml.org/doc/76200},
volume = {38},
year = {1983},
}

TY - JOUR
AU - Simon, Barry
TI - Semiclassical analysis of low lying eigenvalues. I. Non-degenerate minima : asymptotic expansions
JO - Annales de l'I.H.P. Physique théorique
PY - 1983
PB - Gauthier-Villars
VL - 38
IS - 3
SP - 295
EP - 308
LA - eng
KW - semiclassical analysis; low lying eigenvalues; non-degenerate minima; asymptotic expansions; Schrödinger operators with multiple wells; quadratic approximation
UR - http://eudml.org/doc/76200
ER -

References

top
  1. [1] R. Ahlrichs, Convergence Properties of the Intermolecular Force Series (1/r-Expansion), Theo. Chim. Acta, t. 41, 1976, p. 7. 
  2. [2] J. Avron, I. Herbst and B. Simon, Schrödinger Operators in Magnetic Fields III. Atoms and Ions in Constant Fields, Commun. Math. Phys., t. 79, 1981, p. 529-572. Zbl0464.35086MR623966
  3. [3] J.M. Combes, P. Duclos and R. Seiler, Krein's Formula and One Dimensional Multiple Wells, J. Func. Anal., to appear. Zbl0562.47002
  4. [4] J.M. Combes and R. Seiler, Regularity and Asymptotic Properties of the Discrete Spectrum of Electronic Hamiltonians, Int. J. Quant. Chem., t. 14, 1978, p. 213. 
  5. [5] J. Combes and L. Thomas, Asymptotic Behavior of Eigenfunctions for Multiparticle Schrödinger Operators, Commun. Math. Phys., t. 34, 1973, p. 251-270. Zbl0271.35062MR391792
  6. [6] I. Herbst and B. Simon, Dilation Analyticity in Constant Electric Field, II. The N-Body Problem, Borel Summability, Commun. Math. Phys., t. 80, 1981, p. 181-216. Zbl0473.47038MR623157
  7. [7] W. Hunziker and C. Pillet, Commun. Math. Phys., to appear. 
  8. [8] R. Ismigilov, Conditions for the Semiboundedness and Discreteness of the Spectrum for One-Dimensional Differential Equations, Soviet Math. Dokl., t. 2, 1961, p. 1137. Zbl0286.34031
  9. [9] T. Kato, Perturbation Theory for Linear Operators, Springer, 1966. Zbl0148.12601
  10. [10] R. Marcus, D.W. Noid and M.L. Koszykowski, Semiclassical Studies of Bound States and Molecular Dynamics, Springer Lecture Notes in Physics, t. 91, 1978, p. 283. MR550902
  11. [11] W. Miller, Classical Limit Quantum Mechanics and the Theory of Molecular Collisions, Adv. Chem. Phys., t. 25, 1974, p. 69. 
  12. [12] J. Morgan, Schrödinger Operators Whose Potentials Have Separated Singularities, J. Op. Th., t. 1, 1979, p. 1. Zbl0439.35022MR526292
  13. [13] J. Morgan and B. Simon, On the Asymptotics of Born Oppenheimer Curves for Large Nuclear Separations, Int. J. Quant. Chem., t. 17, 1980, p. 1143-1166. 
  14. [14] M. Reed and B. Simon, Methods of Modern Mathematical Physics, IV. Analvsis of Operators, Academic Press, 1978. Zbl0401.47001MR493421
  15. [15] I. Sigal, Geometric Parametrices in the QM N-Body Problem, Duke Math. J., to appear. MR705038
  16. [16] I. Sigal, Geometric Methods in the Quantum Many Body Problem, Nonexistence of Very Negative Ions, Commun. Math. Phys., t. 85, 1982, p. 309-324. Zbl0503.47041MR676004
  17. [17] B. Simon, Coupling Constant Analyticity for the Anharmonic Oscillator (with an appendix by A. Dicke), Ann. Phys., t. 58, 1970, p. 76-136. MR416322
  18. [18] B. Simon, Spectrum and Continuum Eigenfunctions of Schrödinger Operators, J. Func. Anal., t. 42, 1981, p. 347-355. Zbl0471.47028MR626449
  19. [19] B. Simon, Schrödinger Semigroups, Bull. Am. Math. Soc., t. 1, 1982, p. 447-526. Zbl0524.35002MR670130
  20. [20] B. Simon, Semiclassical Analysis of Low Lying Eigenvalues, II. Tunneling, in prep. Zbl0626.35070
  21. [21] E. Witten, Supersymmetry and Morse Theory, Princeton Preprint. MR683171
  22. [22] E.B. Davies, The Twisting Trick for Double Well Hamiltonians, Commun. Math. Phys., t. 85, 1982, p. 471-479. Zbl0524.47019MR678157
  23. (1) Additional earlier papers on the one dimensional case include: (a) J.M. Combes, Seminar on Spectral and Scattering Theory (ed. S. Kuroda), RIMS Publication242, 1975, p. 22-38. (b) J.M. Combes, The Born Oppenheimer Approximation, in The Schrödinger Equation (ed. W. Thirring and P. Urban), Springer, 1976, p. 22-38. (c) J.M. Combes and R. Seiler, in Quantum Dynamics of Molecules (ed. G. Wooley), Plenum, 1980. (d) J.M. Combes, P. Duclos and R. Seiler, in Rigorous Atomic and Molecular Physics (ed. G. Velo and A. Wightman), Plenum, 1981. 
  24. (2) A sketch of Reference 20 appears in B. Simon, Instantons, Double Wells and Large Deviations, Bull. AMS, March, 1983 issue. Zbl0529.35059

Citations in EuDML Documents

top
  1. E. Combet, 2- I Inégalités faibles de Morse
  2. J. Sjöstrand, Puits multiples (d'après des travaux avec B. Helffer)
  3. Gérard Besson, Théorie de Morse (d'après E. Witten)
  4. George A. Hagedorn, High order corrections to the time-independent Born-Oppenheimer approximation. — I. Smooth potentials
  5. George A. Hagedorn, Semiclassical quantum mechanics, IV : large order asymptotics and more general states in more than one dimension
  6. E. Combet, Physique quantique et formules de localisation
  7. E. Combet, Inégalités de Morse d'après E. Witten
  8. Frédéric Klopp, Impuretés dans une structure périodique
  9. Naomasa Ueki, Asymptotic expansion of stochastic oscillatory integrals with rotation invariance
  10. Stephen De Bièvre, Peter D. Hislop, Spectral resonances for the Laplace-Beltrami operator

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.