Semiclassical analysis of low lying eigenvalues. I. Non-degenerate minima : asymptotic expansions
Annales de l'I.H.P. Physique théorique (1983)
- Volume: 38, Issue: 3, page 295-308
- ISSN: 0246-0211
Access Full Article
topHow to cite
topSimon, Barry. "Semiclassical analysis of low lying eigenvalues. I. Non-degenerate minima : asymptotic expansions." Annales de l'I.H.P. Physique théorique 38.3 (1983): 295-308. <http://eudml.org/doc/76200>.
@article{Simon1983,
author = {Simon, Barry},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {semiclassical analysis; low lying eigenvalues; non-degenerate minima; asymptotic expansions; Schrödinger operators with multiple wells; quadratic approximation},
language = {eng},
number = {3},
pages = {295-308},
publisher = {Gauthier-Villars},
title = {Semiclassical analysis of low lying eigenvalues. I. Non-degenerate minima : asymptotic expansions},
url = {http://eudml.org/doc/76200},
volume = {38},
year = {1983},
}
TY - JOUR
AU - Simon, Barry
TI - Semiclassical analysis of low lying eigenvalues. I. Non-degenerate minima : asymptotic expansions
JO - Annales de l'I.H.P. Physique théorique
PY - 1983
PB - Gauthier-Villars
VL - 38
IS - 3
SP - 295
EP - 308
LA - eng
KW - semiclassical analysis; low lying eigenvalues; non-degenerate minima; asymptotic expansions; Schrödinger operators with multiple wells; quadratic approximation
UR - http://eudml.org/doc/76200
ER -
References
top- [1] R. Ahlrichs, Convergence Properties of the Intermolecular Force Series (1/r-Expansion), Theo. Chim. Acta, t. 41, 1976, p. 7.
- [2] J. Avron, I. Herbst and B. Simon, Schrödinger Operators in Magnetic Fields III. Atoms and Ions in Constant Fields, Commun. Math. Phys., t. 79, 1981, p. 529-572. Zbl0464.35086MR623966
- [3] J.M. Combes, P. Duclos and R. Seiler, Krein's Formula and One Dimensional Multiple Wells, J. Func. Anal., to appear. Zbl0562.47002
- [4] J.M. Combes and R. Seiler, Regularity and Asymptotic Properties of the Discrete Spectrum of Electronic Hamiltonians, Int. J. Quant. Chem., t. 14, 1978, p. 213.
- [5] J. Combes and L. Thomas, Asymptotic Behavior of Eigenfunctions for Multiparticle Schrödinger Operators, Commun. Math. Phys., t. 34, 1973, p. 251-270. Zbl0271.35062MR391792
- [6] I. Herbst and B. Simon, Dilation Analyticity in Constant Electric Field, II. The N-Body Problem, Borel Summability, Commun. Math. Phys., t. 80, 1981, p. 181-216. Zbl0473.47038MR623157
- [7] W. Hunziker and C. Pillet, Commun. Math. Phys., to appear.
- [8] R. Ismigilov, Conditions for the Semiboundedness and Discreteness of the Spectrum for One-Dimensional Differential Equations, Soviet Math. Dokl., t. 2, 1961, p. 1137. Zbl0286.34031
- [9] T. Kato, Perturbation Theory for Linear Operators, Springer, 1966. Zbl0148.12601
- [10] R. Marcus, D.W. Noid and M.L. Koszykowski, Semiclassical Studies of Bound States and Molecular Dynamics, Springer Lecture Notes in Physics, t. 91, 1978, p. 283. MR550902
- [11] W. Miller, Classical Limit Quantum Mechanics and the Theory of Molecular Collisions, Adv. Chem. Phys., t. 25, 1974, p. 69.
- [12] J. Morgan, Schrödinger Operators Whose Potentials Have Separated Singularities, J. Op. Th., t. 1, 1979, p. 1. Zbl0439.35022MR526292
- [13] J. Morgan and B. Simon, On the Asymptotics of Born Oppenheimer Curves for Large Nuclear Separations, Int. J. Quant. Chem., t. 17, 1980, p. 1143-1166.
- [14] M. Reed and B. Simon, Methods of Modern Mathematical Physics, IV. Analvsis of Operators, Academic Press, 1978. Zbl0401.47001MR493421
- [15] I. Sigal, Geometric Parametrices in the QM N-Body Problem, Duke Math. J., to appear. MR705038
- [16] I. Sigal, Geometric Methods in the Quantum Many Body Problem, Nonexistence of Very Negative Ions, Commun. Math. Phys., t. 85, 1982, p. 309-324. Zbl0503.47041MR676004
- [17] B. Simon, Coupling Constant Analyticity for the Anharmonic Oscillator (with an appendix by A. Dicke), Ann. Phys., t. 58, 1970, p. 76-136. MR416322
- [18] B. Simon, Spectrum and Continuum Eigenfunctions of Schrödinger Operators, J. Func. Anal., t. 42, 1981, p. 347-355. Zbl0471.47028MR626449
- [19] B. Simon, Schrödinger Semigroups, Bull. Am. Math. Soc., t. 1, 1982, p. 447-526. Zbl0524.35002MR670130
- [20] B. Simon, Semiclassical Analysis of Low Lying Eigenvalues, II. Tunneling, in prep. Zbl0626.35070
- [21] E. Witten, Supersymmetry and Morse Theory, Princeton Preprint. MR683171
- [22] E.B. Davies, The Twisting Trick for Double Well Hamiltonians, Commun. Math. Phys., t. 85, 1982, p. 471-479. Zbl0524.47019MR678157
- (1) Additional earlier papers on the one dimensional case include: (a) J.M. Combes, Seminar on Spectral and Scattering Theory (ed. S. Kuroda), RIMS Publication242, 1975, p. 22-38. (b) J.M. Combes, The Born Oppenheimer Approximation, in The Schrödinger Equation (ed. W. Thirring and P. Urban), Springer, 1976, p. 22-38. (c) J.M. Combes and R. Seiler, in Quantum Dynamics of Molecules (ed. G. Wooley), Plenum, 1980. (d) J.M. Combes, P. Duclos and R. Seiler, in Rigorous Atomic and Molecular Physics (ed. G. Velo and A. Wightman), Plenum, 1981.
- (2) A sketch of Reference 20 appears in B. Simon, Instantons, Double Wells and Large Deviations, Bull. AMS, March, 1983 issue. Zbl0529.35059
Citations in EuDML Documents
top- E. Combet, 2- I Inégalités faibles de Morse
- J. Sjöstrand, Puits multiples (d'après des travaux avec B. Helffer)
- Gérard Besson, Théorie de Morse (d'après E. Witten)
- George A. Hagedorn, High order corrections to the time-independent Born-Oppenheimer approximation. — I. Smooth potentials
- George A. Hagedorn, Semiclassical quantum mechanics, IV : large order asymptotics and more general states in more than one dimension
- E. Combet, Physique quantique et formules de localisation
- E. Combet, Inégalités de Morse d'après E. Witten
- Frédéric Klopp, Impuretés dans une structure périodique
- Naomasa Ueki, Asymptotic expansion of stochastic oscillatory integrals with rotation invariance
- Stephen De Bièvre, Peter D. Hislop, Spectral resonances for the Laplace-Beltrami operator
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.