The concentration-compactness principle in the calculus of variations. The locally compact case, part 2
Annales de l'I.H.P. Analyse non linéaire (1984)
- Volume: 1, Issue: 4, page 223-283
- ISSN: 0294-1449
Access Full Article
topHow to cite
topLions, P. L.. "The concentration-compactness principle in the calculus of variations. The locally compact case, part 2." Annales de l'I.H.P. Analyse non linéaire 1.4 (1984): 223-283. <http://eudml.org/doc/78074>.
@article{Lions1984,
author = {Lions, P. L.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {concentration-compactness principle; rotating star problem; Choquard- Pekar problem; Schrödinger equations; nonlinear field equations; Hartree-Fock problems; minimization over manifolds},
language = {eng},
number = {4},
pages = {223-283},
publisher = {Gauthier-Villars},
title = {The concentration-compactness principle in the calculus of variations. The locally compact case, part 2},
url = {http://eudml.org/doc/78074},
volume = {1},
year = {1984},
}
TY - JOUR
AU - Lions, P. L.
TI - The concentration-compactness principle in the calculus of variations. The locally compact case, part 2
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1984
PB - Gauthier-Villars
VL - 1
IS - 4
SP - 223
EP - 283
LA - eng
KW - concentration-compactness principle; rotating star problem; Choquard- Pekar problem; Schrödinger equations; nonlinear field equations; Hartree-Fock problems; minimization over manifolds
UR - http://eudml.org/doc/78074
ER -
References
top- [1] A. Alvino, P.L. Lions and G. Trombetti, A remark on comparison results for solutions of second order elliptic equations via symmetrization. Preprint. Zbl0597.35005
- [2] C.J. Amick and J.F. Toland, Nonlinear elliptic eigenvalue problems on an infinite strip: global theory of bifurcation and asymptotic bifurcation. To appear in Math. Ann. Zbl0489.35067MR692860
- [3] J.F.G. Auchmuty, Existence of axisymmetric equilibrium figures. Arch. Rat. Mech. Anal., t. 65, 1977, p. 249-261. Zbl0366.76083MR446076
- [4] J.F.G. Auchmuty and R. Reals, Variational solutions of some nonlinear free boundary problems. Arch. Rat. Mech. Anal., t. 43, 1971, p. 255-271. Zbl0225.49013MR337260
- [5] H. Berestycki, T. Gallouet and O. Kavian, work in preparation.
- [6] H. Berestycki and P.L. Lions, Nonlinear scalar field equations. I. — Existence of a ground state. Arch. Rat. Mech. Anal., t. 82, 1983, p. 313-346. Zbl0533.35029MR695535
- [7] H. Berestycki and P.L. Lions, Existence d'ondes solitaires dans des problèmes non linéaires du type Klein-Gordon. C. R. Acad. Sci. Paris, t. 287, 1978, p. 503-506; t. 288, 1979, p. 395-398. Zbl0391.35055
- [8] H. Berestycki and P.L. Lions, Nonlinear scalar field equations. II. — Existence of infinitely many solutions. Arch. Rat. Mech. Anal., t. 82, 1983, p. 347-376. Zbl0556.35046MR695536
- [9] H. Berestycki and P.L. Lions, Existence of stationary states in Nonlinear scalar field equations. In Bifurcation Phenomena in Mathematical Physics and related topics, C. Bardos and D. Bessis (eds.), Reidel, Dordrecht, 1980.
- [10] H. Berestycki and P.L. Lions, Existence d'états multiples dans des equations de champs scalaires non linéaires dans le cas de masse nulle. C. R. Acad. Sci. Paris, t. 297, 1983, p. 267-270. Zbl0542.35072MR727185
- [11] H. Berestycki and P.L. Lions, work in preparation.
- [12] M.S. Berger, On the existence and structure of stationary states for a non-linear Klein-Gordon equation. J. Funct. Anal., t. 9, 1972, p. 249-261. Zbl0224.35061MR299966
- [13] J. Bona, D.K. Bose and R.E.L. Turner, Finite amplitude steady waves in stratified fluids. To appear in J. Math. Pures Appl. Zbl0491.35049MR735931
- [14] T. Cazenave and P.L. Lions, Orbital stability of standing waves for some non-linear Schrödinger equations. Comm. Math. Phys., t. 85, 1982, p. 549-561. Zbl0513.35007MR677997
- [15] C.V. Coffman, A minimum-maximum principle for a class of nonlinear integral equations. J. Anal. Math., t. 22, 1969, p. 391-419. Zbl0179.15601MR249983
- [16] C.V. Coffman, On a class of nonlinear elliptic boundary value problems. J. Math. Mech., t. 19, 1970, p. 351-356. Zbl0194.42103
- [17] C.V. Coffman, Uniqueness of the ground state solution for Δu - u + u3 = 0 and a variational characterization of other solutions. Arch. Rat. Mech. Anal., t. 46, 1972, p. 81-95. Zbl0249.35029MR333489
- [18] S. Coleman, V. Glazer and A. Martin, Action minima among solutions to a class of Euclidean scalar field equations. Comm. Math. Phys., t. 58, 1978, p. 211-221. MR468913
- [19] M.J. Esteban, Existence d'une infinité d'ondes solitaires pour des équations de champs non linéaires dans le plan. Ann. Fac. Sc. Toulouse, t. II, 1980, p. 181- 191. Zbl0458.35040MR614011
- [20] M.J. Esteban, Nonlinear elliptic problems in strip-like domains; symmetry of positive vortex rings. Nonlinear Anal. T. M. A., t. 7, 1983, p. 365-379. Zbl0513.35035MR696736
- [21] L.E. Fraenkel and M.S. Berger, A global theory of steady vortex rings in an ideal fluid. Acta Math., 132, 1974, p. 13-51. Zbl0282.76014MR422916
- [22] B. Gidas, W.N. Ni and L. Nirenberg, Symmetry of positive solutions of non-linear elliptic equations in Rn. In Math. Anal. Appl., part 1, L. Nachbin (ed.), Academic Press, 1981. Zbl0469.35052
- [23] E.H. Lieb and B. Simon, The Hartree-Fock theory for Coulomb systems. Comm. Math. Phys., t. 53, 1974, p. 185-194. MR452286
- [24] P.L. Lions, The concentration-compactness principle in the Calculus of Variations. The locally compact case, part 1. Ann. I. H. P. Anal. non linéaire, t. 1, 1984, p. 109-145. Zbl0541.49009MR778970
- [25] P.L. Lions, Compactness and topological methods for some nonlinear variational problems of Mathematical Physics. In Nonlinear Problems : Present and Future ; A. R. Bishop, D. K. CAMPBELL, B. Nicolaenko (eds.), North-Holland, Amsterdam, 1982. Zbl0496.35079MR675625
- [26] P.L. Lions, Symmetry and compactness in Sobolev spaces. J. Funct. Anal., t. 49, 1982, p. 315-334. Zbl0501.46032MR683027
- [27] P.L. Lions, Principe de concentration-compacité en Calcul des Variations. C. R. Acad. Sci. Paris, t. 294, 1982, p. 261-264. Zbl0485.49005MR653747
- [28] P.L. Lions, On the concentration-compactness principle. In Contributions to Nonlinear Partial Differential Equations, Pitman, London, 1983. Zbl0522.49007MR730813
- [29] P.L. Lions, Some remarks on Hartree equations. Nonlinear Anal. T. M. A., t. 5, 1981, p. 1245-1256. Zbl0472.35074MR636734
- [30] P.L. Lions, Minimization problems in L1(RN). J. Funct. Anal., t. 49, 1982, p. 315-334.
- [31] P.L. Lions, The concentration-compactness principle in the Calculus of Variations. The limit case. To appear in Revista Matematica Iberoamericana. Zbl0704.49005MR730813
- [32] P.L. Lions, La méthode de concentration-compacité en Calcul des Variations. In Séminaire Goulaouic-Meyer-Schwartz, 1982-1983, École Polytechnique, Palaiseau, 1983. MR716902
- [33] P.L. Lions, Applications de la méthode de concentration-compacité à l'existence de fonctions extrêmales. C. R. Acad. Sci. Paris, t. 296, 1983, p. 645-648. Zbl0522.49008MR705681
- [34] Z. Nehari, On a nonlinear differential equation arising in Nuclear physics. Proc. R. Irish Acad., t. 62, 1963, p. 117-135. Zbl0124.30204MR165176
- [35] S. Pohozaev, Eigenfunctions of the equation Δu + λf(u) = 0. Soviet Math. Dokl., t. 165, 1965, p. 1408-1412. Zbl0141.30202MR192184
- [36] G.H. Ryder, Boundary value problems for a class of nonlinear differential equations. Pac. J. Math., t. 22, 1967, p. 477-503. Zbl0152.28303MR219794
- [37] W. Strauss, Existence of solitary waves in higher dimensions. Comm. Math. Phys., t. 55, 1977, p. 149-162. Zbl0356.35028MR454365
- [38] M. Struwe, Multiple solutions of differential equations without the Palais-Smale condition. Math. Ann., t. 261, 1982, p. 399-412. Zbl0506.35034MR679798
- [39] B.R. Suydam, Self-focusing of very powerful laser beams. U. S. Dept of Commerce. N. B. S. Special Publication 387.
- [40] G. Talenti, Elliptic equations and rearrangements. Ann. Scuola Norm. Sup. Pisa, t. 3, 1976, p. 697-718. Zbl0341.35031MR601601
- [41] C. Taubes, The existence of a non-minimal solution to the SU(2) Yang-Mills-Hoggs equations on R3. Comm. Math. Phys., t. 86, 1982, p. 257 ; t. 86, 1982, p. 299. Zbl0514.58016
Citations in EuDML Documents
top- H. Brezis, Problèmes de convergence dans certaines EDP non linéaires et applications géométriques
- Martin Schechter, Wenming Zou, Weak linking theorems and Schrödinger equations with critical Sobolev exponent
- Manuel Del Pino, Patricio L. Felmer, Multi-peak bound states for nonlinear Schrödinger equations
- Martin Schechter, Wenming Zou, Weak Linking Theorems and Schrödinger Equations with Critical Sobolev Exponent
- Giovanna Citti, On the exterior Dirichlet problem for
- Giovanni Mancini, Roberta Musina, The role of the boundary in some semilinear Neumann problems
- Silvia Cingolani, Louis Jeanjean, Simone Secchi, Multi-peak solutions for magnetic NLS equations without non-degeneracy conditions
- Michel Willem, Minimization problems with lack of compactness
- Anne de Bouard, Jean-Claude Saut, Solitary waves of generalized Kadomtsev-Petviashvili equations
- Thierry Colin, Michael I. Weinstein, On the ground states of vector nonlinear Schrödinger equations
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.