The concentration-compactness principle in the calculus of variations. The locally compact case, part 2

P. L. Lions

Annales de l'I.H.P. Analyse non linéaire (1984)

  • Volume: 1, Issue: 4, page 223-283
  • ISSN: 0294-1449

How to cite

top

Lions, P. L.. "The concentration-compactness principle in the calculus of variations. The locally compact case, part 2." Annales de l'I.H.P. Analyse non linéaire 1.4 (1984): 223-283. <http://eudml.org/doc/78074>.

@article{Lions1984,
author = {Lions, P. L.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {concentration-compactness principle; rotating star problem; Choquard- Pekar problem; Schrödinger equations; nonlinear field equations; Hartree-Fock problems; minimization over manifolds},
language = {eng},
number = {4},
pages = {223-283},
publisher = {Gauthier-Villars},
title = {The concentration-compactness principle in the calculus of variations. The locally compact case, part 2},
url = {http://eudml.org/doc/78074},
volume = {1},
year = {1984},
}

TY - JOUR
AU - Lions, P. L.
TI - The concentration-compactness principle in the calculus of variations. The locally compact case, part 2
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1984
PB - Gauthier-Villars
VL - 1
IS - 4
SP - 223
EP - 283
LA - eng
KW - concentration-compactness principle; rotating star problem; Choquard- Pekar problem; Schrödinger equations; nonlinear field equations; Hartree-Fock problems; minimization over manifolds
UR - http://eudml.org/doc/78074
ER -

References

top
  1. [1] A. Alvino, P.L. Lions and G. Trombetti, A remark on comparison results for solutions of second order elliptic equations via symmetrization. Preprint. Zbl0597.35005
  2. [2] C.J. Amick and J.F. Toland, Nonlinear elliptic eigenvalue problems on an infinite strip: global theory of bifurcation and asymptotic bifurcation. To appear in Math. Ann. Zbl0489.35067MR692860
  3. [3] J.F.G. Auchmuty, Existence of axisymmetric equilibrium figures. Arch. Rat. Mech. Anal., t. 65, 1977, p. 249-261. Zbl0366.76083MR446076
  4. [4] J.F.G. Auchmuty and R. Reals, Variational solutions of some nonlinear free boundary problems. Arch. Rat. Mech. Anal., t. 43, 1971, p. 255-271. Zbl0225.49013MR337260
  5. [5] H. Berestycki, T. Gallouet and O. Kavian, work in preparation. 
  6. [6] H. Berestycki and P.L. Lions, Nonlinear scalar field equations. I. — Existence of a ground state. Arch. Rat. Mech. Anal., t. 82, 1983, p. 313-346. Zbl0533.35029MR695535
  7. [7] H. Berestycki and P.L. Lions, Existence d'ondes solitaires dans des problèmes non linéaires du type Klein-Gordon. C. R. Acad. Sci. Paris, t. 287, 1978, p. 503-506; t. 288, 1979, p. 395-398. Zbl0391.35055
  8. [8] H. Berestycki and P.L. Lions, Nonlinear scalar field equations. II. — Existence of infinitely many solutions. Arch. Rat. Mech. Anal., t. 82, 1983, p. 347-376. Zbl0556.35046MR695536
  9. [9] H. Berestycki and P.L. Lions, Existence of stationary states in Nonlinear scalar field equations. In Bifurcation Phenomena in Mathematical Physics and related topics, C. Bardos and D. Bessis (eds.), Reidel, Dordrecht, 1980. 
  10. [10] H. Berestycki and P.L. Lions, Existence d'états multiples dans des equations de champs scalaires non linéaires dans le cas de masse nulle. C. R. Acad. Sci. Paris, t. 297, 1983, p. 267-270. Zbl0542.35072MR727185
  11. [11] H. Berestycki and P.L. Lions, work in preparation. 
  12. [12] M.S. Berger, On the existence and structure of stationary states for a non-linear Klein-Gordon equation. J. Funct. Anal., t. 9, 1972, p. 249-261. Zbl0224.35061MR299966
  13. [13] J. Bona, D.K. Bose and R.E.L. Turner, Finite amplitude steady waves in stratified fluids. To appear in J. Math. Pures Appl. Zbl0491.35049MR735931
  14. [14] T. Cazenave and P.L. Lions, Orbital stability of standing waves for some non-linear Schrödinger equations. Comm. Math. Phys., t. 85, 1982, p. 549-561. Zbl0513.35007MR677997
  15. [15] C.V. Coffman, A minimum-maximum principle for a class of nonlinear integral equations. J. Anal. Math., t. 22, 1969, p. 391-419. Zbl0179.15601MR249983
  16. [16] C.V. Coffman, On a class of nonlinear elliptic boundary value problems. J. Math. Mech., t. 19, 1970, p. 351-356. Zbl0194.42103
  17. [17] C.V. Coffman, Uniqueness of the ground state solution for Δu - u + u3 = 0 and a variational characterization of other solutions. Arch. Rat. Mech. Anal., t. 46, 1972, p. 81-95. Zbl0249.35029MR333489
  18. [18] S. Coleman, V. Glazer and A. Martin, Action minima among solutions to a class of Euclidean scalar field equations. Comm. Math. Phys., t. 58, 1978, p. 211-221. MR468913
  19. [19] M.J. Esteban, Existence d'une infinité d'ondes solitaires pour des équations de champs non linéaires dans le plan. Ann. Fac. Sc. Toulouse, t. II, 1980, p. 181- 191. Zbl0458.35040MR614011
  20. [20] M.J. Esteban, Nonlinear elliptic problems in strip-like domains; symmetry of positive vortex rings. Nonlinear Anal. T. M. A., t. 7, 1983, p. 365-379. Zbl0513.35035MR696736
  21. [21] L.E. Fraenkel and M.S. Berger, A global theory of steady vortex rings in an ideal fluid. Acta Math., 132, 1974, p. 13-51. Zbl0282.76014MR422916
  22. [22] B. Gidas, W.N. Ni and L. Nirenberg, Symmetry of positive solutions of non-linear elliptic equations in Rn. In Math. Anal. Appl., part 1, L. Nachbin (ed.), Academic Press, 1981. Zbl0469.35052
  23. [23] E.H. Lieb and B. Simon, The Hartree-Fock theory for Coulomb systems. Comm. Math. Phys., t. 53, 1974, p. 185-194. MR452286
  24. [24] P.L. Lions, The concentration-compactness principle in the Calculus of Variations. The locally compact case, part 1. Ann. I. H. P. Anal. non linéaire, t. 1, 1984, p. 109-145. Zbl0541.49009MR778970
  25. [25] P.L. Lions, Compactness and topological methods for some nonlinear variational problems of Mathematical Physics. In Nonlinear Problems : Present and Future ; A. R. Bishop, D. K. CAMPBELL, B. Nicolaenko (eds.), North-Holland, Amsterdam, 1982. Zbl0496.35079MR675625
  26. [26] P.L. Lions, Symmetry and compactness in Sobolev spaces. J. Funct. Anal., t. 49, 1982, p. 315-334. Zbl0501.46032MR683027
  27. [27] P.L. Lions, Principe de concentration-compacité en Calcul des Variations. C. R. Acad. Sci. Paris, t. 294, 1982, p. 261-264. Zbl0485.49005MR653747
  28. [28] P.L. Lions, On the concentration-compactness principle. In Contributions to Nonlinear Partial Differential Equations, Pitman, London, 1983. Zbl0522.49007MR730813
  29. [29] P.L. Lions, Some remarks on Hartree equations. Nonlinear Anal. T. M. A., t. 5, 1981, p. 1245-1256. Zbl0472.35074MR636734
  30. [30] P.L. Lions, Minimization problems in L1(RN). J. Funct. Anal., t. 49, 1982, p. 315-334. 
  31. [31] P.L. Lions, The concentration-compactness principle in the Calculus of Variations. The limit case. To appear in Revista Matematica Iberoamericana. Zbl0704.49005MR730813
  32. [32] P.L. Lions, La méthode de concentration-compacité en Calcul des Variations. In Séminaire Goulaouic-Meyer-Schwartz, 1982-1983, École Polytechnique, Palaiseau, 1983. MR716902
  33. [33] P.L. Lions, Applications de la méthode de concentration-compacité à l'existence de fonctions extrêmales. C. R. Acad. Sci. Paris, t. 296, 1983, p. 645-648. Zbl0522.49008MR705681
  34. [34] Z. Nehari, On a nonlinear differential equation arising in Nuclear physics. Proc. R. Irish Acad., t. 62, 1963, p. 117-135. Zbl0124.30204MR165176
  35. [35] S. Pohozaev, Eigenfunctions of the equation Δu + λf(u) = 0. Soviet Math. Dokl., t. 165, 1965, p. 1408-1412. Zbl0141.30202MR192184
  36. [36] G.H. Ryder, Boundary value problems for a class of nonlinear differential equations. Pac. J. Math., t. 22, 1967, p. 477-503. Zbl0152.28303MR219794
  37. [37] W. Strauss, Existence of solitary waves in higher dimensions. Comm. Math. Phys., t. 55, 1977, p. 149-162. Zbl0356.35028MR454365
  38. [38] M. Struwe, Multiple solutions of differential equations without the Palais-Smale condition. Math. Ann., t. 261, 1982, p. 399-412. Zbl0506.35034MR679798
  39. [39] B.R. Suydam, Self-focusing of very powerful laser beams. U. S. Dept of Commerce. N. B. S. Special Publication 387. 
  40. [40] G. Talenti, Elliptic equations and rearrangements. Ann. Scuola Norm. Sup. Pisa, t. 3, 1976, p. 697-718. Zbl0341.35031MR601601
  41. [41] C. Taubes, The existence of a non-minimal solution to the SU(2) Yang-Mills-Hoggs equations on R3. Comm. Math. Phys., t. 86, 1982, p. 257 ; t. 86, 1982, p. 299. Zbl0514.58016

Citations in EuDML Documents

top
  1. H. Brezis, Problèmes de convergence dans certaines EDP non linéaires et applications géométriques
  2. Martin Schechter, Wenming Zou, Weak linking theorems and Schrödinger equations with critical Sobolev exponent
  3. Manuel Del Pino, Patricio L. Felmer, Multi-peak bound states for nonlinear Schrödinger equations
  4. Martin Schechter, Wenming Zou, Weak Linking Theorems and Schrödinger Equations with Critical Sobolev Exponent
  5. Giovanna Citti, On the exterior Dirichlet problem for Δ u - u + f ( x , u ) = 0
  6. Giovanni Mancini, Roberta Musina, The role of the boundary in some semilinear Neumann problems
  7. Silvia Cingolani, Louis Jeanjean, Simone Secchi, Multi-peak solutions for magnetic NLS equations without non-degeneracy conditions
  8. Michel Willem, Minimization problems with lack of compactness
  9. Anne de Bouard, Jean-Claude Saut, Solitary waves of generalized Kadomtsev-Petviashvili equations
  10. Thierry Colin, Michael I. Weinstein, On the ground states of vector nonlinear Schrödinger equations

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.