Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent
Annales de l'I.H.P. Analyse non linéaire (1991)
- Volume: 8, Issue: 2, page 159-174
- ISSN: 0294-1449
Access Full Article
topHow to cite
topHan, Zheng-Chao. "Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent." Annales de l'I.H.P. Analyse non linéaire 8.2 (1991): 159-174. <http://eudml.org/doc/78248>.
@article{Han1991,
author = {Han, Zheng-Chao},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {singular solutions; critical Sobolev exponent},
language = {eng},
number = {2},
pages = {159-174},
publisher = {Gauthier-Villars},
title = {Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent},
url = {http://eudml.org/doc/78248},
volume = {8},
year = {1991},
}
TY - JOUR
AU - Han, Zheng-Chao
TI - Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1991
PB - Gauthier-Villars
VL - 8
IS - 2
SP - 159
EP - 174
LA - eng
KW - singular solutions; critical Sobolev exponent
UR - http://eudml.org/doc/78248
ER -
References
top- [AP] F. Atkinson and L. Peletier, Elliptic Equations with Nearly Critical Growth, J. Diff. Eq., vol. 70, 1987, pp. 349-365. Zbl0657.35058MR915493
- [BC] A. Bahri and J. Coron, On a Nonlinear Elliptic Equation Involving the Critical Sobolev Exponent: the Effect of the Topology of the Domain, Comm. Pure Appl. Math., vol. 41, 1988, pp. 253-294. Zbl0649.35033MR929280
- [BP] H. Brezis and L. Peletier, Asymptotics for Elliptic Equations Involving Critical Growth (to appear). Zbl0685.35013MR1034005
- [CGS] L. Caffarelli, B. Gidas and J. Spuck, Asymptotic Symmetry and Local Behavior of Semilinear Elliptic Equations with Critical Growth, Comm. Pure Appl. Math., vol. 42, 1989, p. 271-297. Zbl0702.35085MR982351
- [DLN] D.G. De Figueiredo, P.L. Lions and R.D. Nussbaum, A priori Estimates and Existence of Positive Solutions of Semilinear Elliptic Equations, J. Math. Pures Appl., vol. 61, 1982, pp. 41-63. Zbl0452.35030MR664341
- [D] W. Ding, Positive Solutions of Δu + u(n + 2)/(n - 2) = 0 on a Contractible Domain, preprint. MR1027983
- [GNN] B. Gidas, W. Ni and L. Nirenberg, Symmetry and Related Properties via the Maximum Principle, Comm. Math. Phys., vol. 68, 1979, pp. 209-243. Zbl0425.35020MR544879
- [GT] D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, 2nd ed, New York, 1983. Zbl0562.35001MR737190
- [P] S. Pohozaev, Eigenfunctions of the Equations Δu=λf(u), Soviet Math. Dokl., vol. 6, 1965, pp. 1408-1411.
- [R1] O. Rey, The Role of the Green's Function in a Nonlinear Elliptic Equation Involving the Critical Sobolev Exponent, Funct. Anal., 1990 (to appear). Zbl0786.35059MR1040954
- [R2] O. Rey, A Multiplicity Result for a Variational Problem with Lack of Compactness, J. Nonlinear Analysis, T.M.A., vol. 133, No. 10, 1989, pp. 1241-1249. Zbl0702.35101MR1020729
- [R3] O. Rey, Proof of Two Conjectures of H. Brezis and L. A. Peletier, Manuscripta math., vol. 65, 1989, pp. 19-37. Zbl0708.35032MR1006624
- [SU] J. Sacks and K. Uhlenbeck, The Existence of Minimal Immersions of 2-Spheres, Ann. Math., vol. 113, 1981, pp. 1-24. Zbl0462.58014MR604040
- [S] M. Struwe, A Global Compactness Result for Elliptic Boundary Value Problems Involving Limiting Nonlinearities, Math. Z., vol. 187, 1984, pp. 511-517. Zbl0535.35025MR760051
Citations in EuDML Documents
top- Riccardo Molle, Donato Passaseo, Positive solutions of slightly supercritical elliptic equations in symmetric domains
- Monica Musso, Angela Pistoia, Persistence of Coron’s solution in nearly critical problems
- Katiuscia Cerqueti, Un risultatodi unicità per un’equazione semilineare ellittica con esponente critico in domini simmetrici
- Olivier Druet, Elliptic equations with critical Sobolev exponents in dimension 3
- Emmanuel Hebey, Michel Vaugon, Meilleures constantes dans le théorème d'inclusion de Sobolev
- Angela Pistoia, Tobias Weth, Sign changing bubble tower solutions in a slightly subcritical semilinear Dirichlet problem
- Micol Amar, Adriana Garroni, -convergence of concentration problems
- Giampiero Palatucci, Subcritical approximation of the Sobolev quotient and a related concentration result
- I. A. Guerra, Solutions of an elliptic system with a nearly critical exponent
- Olivier Rey, Elliptic equations with limiting Sobolev exponent: the impact of the Green's function
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.