Looking for the Bernoulli shift
Annales de l'I.H.P. Analyse non linéaire (1993)
- Volume: 10, Issue: 5, page 561-590
- ISSN: 0294-1449
Access Full Article
topHow to cite
topSéré, Éric. "Looking for the Bernoulli shift." Annales de l'I.H.P. Analyse non linéaire 10.5 (1993): 561-590. <http://eudml.org/doc/78317>.
@article{Séré1993,
author = {Séré, Éric},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Hamiltonian systems; homoclinic orbits; topological entropy; variational methods},
language = {eng},
number = {5},
pages = {561-590},
publisher = {Gauthier-Villars},
title = {Looking for the Bernoulli shift},
url = {http://eudml.org/doc/78317},
volume = {10},
year = {1993},
}
TY - JOUR
AU - Séré, Éric
TI - Looking for the Bernoulli shift
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1993
PB - Gauthier-Villars
VL - 10
IS - 5
SP - 561
EP - 590
LA - eng
KW - Hamiltonian systems; homoclinic orbits; topological entropy; variational methods
UR - http://eudml.org/doc/78317
ER -
References
top- [B] U. Bessi, A Variational Proof of a Sitnikov-Like Theorem, preprint, Scuola Normale Superiore. Zbl0778.34036MR1220837
- [C-L] K.C. Chang and J.Q. Liu, A Remark on the Homoclinic Orbits for Hamiltonian Systems, research report of Peking University.
- [CZ-E-S] V. Coti-Zelati, I. Ekeland and E. Séré, A Variational Approach to Homoclinic Orbits in Hamiltonian Systems, Mathematische Annalen, Vol. 288, 1990, pp. 133-160. Zbl0731.34050MR1070929
- [CZ-R]1 V. Coti-Zelati and P. Rabinowitz, Homoclinic Orbits for Second Order Hamiltonian Systems Possessing Superquadratic Potentials, preprint, Sissa. Zbl0744.34045MR1119200
- [CZ-R]2 V. Coti-Zelati and P. Rabinowitz, Homoclinic Type Solutions for a Semilinear Elliptic PDE on Rn, preprint, Sissa. Zbl0785.35029
- [E] I. Ekeland, Convexity Methods in Hamiltonian Systems, Springer Verlag, 1989. Zbl0707.70003
- [H-W] H. Hofer and K. Wysocki, First Order Elliptic Systems and the Existence of Homoclinic Orbits in Hamiltonian Systems, Math. Annalen, Vol. 288, 1990, pp. 483-503. Zbl0702.34039MR1079873
- [LI]1 Y.Y. Li, On - Δu = k (x) u5 in R3, preprint, Rutgers University.
- [LI]2 Y.Y. Li, On Prescribing Scalar Curvature Problem on S3 and S4, preprint, Rutgers University. MR1149639
- [LS] P.L. Lions, The Concentration-Compactness Principle in the Calculus of Variations, Revista Iberoamericana, Vol. 1, 1985, pp. 145-201. Zbl0704.49005MR834360
- [M] J. Moser, Stable and Random Motions in Dynamical Systems, Princeton University Press, Princeton, 1973. Zbl0271.70009MR442980
- [O] Séminaire d'Orsay, Travaux de Thurston sur les surfaces, Astérisque, Vol. 66-67, Société Mathématique de France. Zbl0731.57001
- [S] E. Séré, Existence of Infinitely Many Homoclinic Orbits in Hamiltonian Systems, Math. Zeitschrift, Vol. 209, 1992, p. 27-42. Zbl0725.58017MR1143210
- [T] K. Tanaka, Homoclinic Orbits in a First Order Superquadratic Hamiltonian System: Convergence of Subharmonics, preprint, Nagoya University. Zbl0787.34041
- [W] S. Wiggins, Global Bifurcations and Chaos, Applied Mathematical Sciences, Vol. 73, Springer-Verlag. Zbl0661.58001MR956468
Citations in EuDML Documents
top- Massimiliano Berti, Heteroclinic solutions for perturbed second order systems
- Elena Bosetto, Soluzioni di tipo «multibump» e dinamiche caotiche in una classe di equazioni differenziali periodiche
- Enrico Serra, Massimo Tarallo, Susanna Terracini, On the existence of homoclinic solutions for almost periodic second order systems
- Francesca G. Alessio, Potenziali ad oscillazione lenta e dinamica multibump per una classe di sistemi Lagrangiani
- S. V. Bolotin, P. H. Rabinowitz, A variational construction of chaotic trajectories for a Hamiltonian system on a torus
- Elena Bosetto, Enrico Serra, Susanna Terracini, Density of chaotic dynamics in periodically forced pendulum-type equations
- Massimiliano Berti, Philippe Bolle, Variational construction of homoclinics and chaos in presence of a saddle-saddle equilibrium
- Francesca Alessio, Marta Calanchi, Homoclinic-type solutions for an almost periodic semilinear elliptic equation on
- Antonio Ambrosetti, Marino Badiale, Homoclinics : Poincaré-Melnikov type results via a variational approach
- B. Buffoni, Nested axi-symmetric vortex rings
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.