Solutions of Ginzburg-Landau equations and critical points of the renormalized energy

Fang Hua Lin

Annales de l'I.H.P. Analyse non linéaire (1995)

  • Volume: 12, Issue: 5, page 599-622
  • ISSN: 0294-1449

How to cite

top

Hua Lin, Fang. "Solutions of Ginzburg-Landau equations and critical points of the renormalized energy." Annales de l'I.H.P. Analyse non linéaire 12.5 (1995): 599-622. <http://eudml.org/doc/78369>.

@article{HuaLin1995,
author = {Hua Lin, Fang},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {motion of vortices; Ginzburg-Landau equation},
language = {eng},
number = {5},
pages = {599-622},
publisher = {Gauthier-Villars},
title = {Solutions of Ginzburg-Landau equations and critical points of the renormalized energy},
url = {http://eudml.org/doc/78369},
volume = {12},
year = {1995},
}

TY - JOUR
AU - Hua Lin, Fang
TI - Solutions of Ginzburg-Landau equations and critical points of the renormalized energy
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1995
PB - Gauthier-Villars
VL - 12
IS - 5
SP - 599
EP - 622
LA - eng
KW - motion of vortices; Ginzburg-Landau equation
UR - http://eudml.org/doc/78369
ER -

References

top
  1. [BBH] F. Bethuel, H. Brezis and F. Helein, Ginzburg-Landau vertices, Birkhaüser, Boston, 1994. Zbl0802.35142MR1269538
  2. [BBH2] F. Bethuel, H. Brezis and F. Helein, Asymptotics for the minimization of a Ginzburg-Landau functional, Cal. variations and P.D.E., Vol. 1#2, 1993, pp. 123-148. Zbl0834.35014MR1261720
  3. [BMR] H. Brezis, F. Merle and T. Riviere, Quantization effects, for -Δu = u(1-(u)2) in R2, preprint. 
  4. [CL] Y.M. Chen and F.H. Lin, Evaluation of harmonic maps with the Dirichlet boundary condition, Comm. in Analysis and Geometry, Vol. 1#3, 1993, pp. 327-346. Zbl0845.35049MR1266472
  5. [CS] Y.M. Chen and M. Struwe, Existence and partial regularity for heat flow for harmonic maps, Math. Z, Vol. 201, 1989, pp. 83-103. Zbl0652.58024MR990191
  6. [HL] R. Hardt and F.H. Lin, Singularities for p-energy minimizing unit vector fields on planar domains, to appear in Cal. variation and P. D. E. Zbl0828.58008
  7. [E] E. Weinan, Dynamics of vortices in Ginzburg-Landau theories with applications to superconductivity, preprint. Zbl0814.34039MR1297726
  8. [LSU] O.A. Ladyzenskaya, N.A. Solonnikov and N.N. Uralseva, Linear and quasilinear equations of parabolic type, Translations of AMS, Mon. #23 (196X). 
  9. [N] J. Neu, Vortex dynamics of complex scalar fields, Physics D., Vol. 43, 1990, pp. 384-406. Zbl0711.35024
  10. [PR] L. Pismen and J. Rubinstein, Dynamics of defects, in nematics, mathematical and physical aspects, J. M. Coron et al. eds, Kluwer Pubs., 1991. MR1178081
  11. [R] P. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, Conf. Board of the Math. Sci., by AMS #65. Zbl0609.58002MR845785
  12. [RS] J. Rubinstein and P. Sternberg, On the Slow Motion of Vortices in the Ginzburg-Landau heat flow, preprint. Zbl0838.35102MR1356453
  13. [S] L. Simon, Asymptotics for a class of non-linear evolution equations, with applications to geometric problems, Annals of Math., Vol. 118, 1983, pp. 527- 571. Zbl0549.35071MR727703
  14. [St] M. Struwe, On the asymptotic behavior of minimizers of the Ginsburg-Landau model in 2 dimensions, J. Diff. Int. Eqs., Vol. 7, 1994. Zbl0809.35031MR1269674
  15. [St2] M. Struwe, On the evolution of harmonic maps of Riemannian surfaces, Comment. Math. Helv., Vol. 60, 1985, pp. 558-581. Zbl0595.58013MR826871

Citations in EuDML Documents

top
  1. Feng Zhou, Qing Zhou, A remark on multiplicity of solutions for the Ginzburg-Landau equation
  2. Tristan Rivière, Line vortices in the U(1) Higgs model
  3. Robert L. Jerrard, Halil Mete Soner, Scaling limits and regularity results for a class of Ginzburg-Landau systems
  4. Noel J. Walkington, Numerical approximation of nematic liquid crystal flows governed by the Ericksen-Leslie equations
  5. Luigi Ambrosio, Halil Mete Soner, A measure theoretic approach to higher codimension mean curvature flows
  6. Noel J. Walkington, Numerical approximation of nematic liquid crystal flows governed by the Ericksen-Leslie equations

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.