A new approach to Young measure theory, relaxation and convergence in energy

M. A. Sychev

Annales de l'I.H.P. Analyse non linéaire (1999)

  • Volume: 16, Issue: 6, page 773-812
  • ISSN: 0294-1449

How to cite

top

Sychev, M. A.. "A new approach to Young measure theory, relaxation and convergence in energy." Annales de l'I.H.P. Analyse non linéaire 16.6 (1999): 773-812. <http://eudml.org/doc/78483>.

@article{Sychev1999,
author = {Sychev, M. A.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Young measures; lower semicontinuity; integral functionals; relaxation},
language = {eng},
number = {6},
pages = {773-812},
publisher = {Gauthier-Villars},
title = {A new approach to Young measure theory, relaxation and convergence in energy},
url = {http://eudml.org/doc/78483},
volume = {16},
year = {1999},
}

TY - JOUR
AU - Sychev, M. A.
TI - A new approach to Young measure theory, relaxation and convergence in energy
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1999
PB - Gauthier-Villars
VL - 16
IS - 6
SP - 773
EP - 812
LA - eng
KW - Young measures; lower semicontinuity; integral functionals; relaxation
UR - http://eudml.org/doc/78483
ER -

References

top
  1. [1] E. Acerbi, N. Fusco, Semicontinuity problems in the calculus of variations. Arch. Rat. Mech. Anal., Vol. 86, 1984, pp. 125-145. Zbl0565.49010MR751305
  2. [2] E. Acerbi, G. Dal Maso, New lower semicontinuity results for polyconvex integrals, Calc.Var. & PDE2 (1994), no. 3, pp. 329-371. Zbl0810.49014
  3. [3] E.J. Balder, A general approach to lower semicontinuity and lower closure in optimal control theory, SIAM J. Control and Optimization, Vol. 22, 1984, pp. 570-598. Zbl0549.49005MR747970
  4. [4] J.M. Ball, Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rat. Mech. Anal., Vol. 63, 1978, pp. 337-403. Zbl0368.73040MR475169
  5. [5] J.M. Ball, A version of the fundamental theorem for Young measures, in: PDE's and Continuum Models of Phase Transitions, M.Rascle, D.Serre, M.Slemrod, eds., Lecture Notes in Physics344, Springer-Verlag (1989), pp. 207-215. Zbl0991.49500MR1036070
  6. [6] G. Bouchitté, I. Fonseca, J. Malý, The Effective Bulk Energy of the Relaxed Energy of Multiple Integrals Below the Growth Exponent, Proc. Royal Soc. Edinb. Sect A, Vol. 128, 1998, pp. 463-479. Zbl0907.49008MR1632814
  7. [7] J.M. Ball, F. Murat, W1,p-quasiconvexity and variational problems for multiple integrals, J. Funct. Anal., Vol. 58, 1984, pp. 225-253. Zbl0549.46019MR759098
  8. [8] H. Berliocchi, J.M. Lasry, Intégrandes normales et mesures paramétrées en calcul des variations, Bull. Soc. Math. France, Vol. 101, 1973, pp.129-184. Zbl0282.49041MR344980
  9. [9] J.M. Ball, K. Zhang, Lower semicontinuity of multiple integrals and the bitting lemma, Proc. Roy. Soc. Edinburgh Sect A., Vol. 114, 1990, pp. 367-379. Zbl0716.49011MR1055554
  10. [10] G. Buttazzo, Lower Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations, Pitman Research Notes in Math. Series207, 1989. Zbl0669.49005
  11. [11] P. Celada, G.G. DalMASO, Further remarks on the lower semicontinuity of polyconvex integrals, Ann. Inst. H. Poincaré Anal. Non. Linéaire, Vol. 11, 1994, no. 6, pp. 661-691. Zbl0833.49013MR1310627
  12. [12] C. Castaing, M. Valadier, Convex analysis and measurable multifunctions, Lecture Notes in Mathematics580, Springer-Verlag, Berlin-New York, 1977. Zbl0346.46038MR467310
  13. [13] A. Cellina, S. Zagatti, A version of Olech's lemma in a problem of the Calculus of Variations, SIAM J. Control and Optimization, Vol. 32, 1994, pp. 1114-1127. Zbl0874.49013MR1280232
  14. [14] B. Dacorogna, Weak continuity and weak lower semicontinuity of nonlinear problems, Lecture Notes in Math.922, Springer-Verlag, 1982. Zbl0484.46041MR658130
  15. [15] B. Dacorogna, Direct methods in the Calculus of Variations. Springer-Verlag, 1989. Zbl0703.49001MR990890
  16. [16] G. Dal Maso, C. Sbordone, Weak lower semicontinuity of polyconvex integrals: a borderline case. Math. Z., Vol. 218, 1995, no. 4, pp. 603-609. Zbl0822.49010MR1326990
  17. [17] R.E. Edwards, Functional Analysis, Holt, Rinehart and Winston, 1965. Zbl0182.16101MR221256
  18. [18] I. Ekeland, R. Temam, Convex analysis and variational problems. North-Holland, 1976. Zbl0322.90046MR463994
  19. [19] L.C. Evans, R.F. Gariepy, Some remarks on quasiconvexity and strong convergence, Proc. Roy. Soc. Edin. Sect. A, Vol. 106, 1987, pp. 53-61. Zbl0628.49011MR899940
  20. [20] L.C. Evans, Weak convergence methods for nonlinear partial differential equations. AMS, 1990. Zbl0698.35004MR1034481
  21. [21] N. Fusco, J. Hutchinson, A direct proof for lower semicontinuity of polyconvex functionals, Manuscripta Math., Vol. 87, 1995, no.1, pp. 35-50. Annales de l'Institut Henri Poincaré - Analyse non linéaire Zbl0874.49015MR1329439
  22. [22] I. Fonseca, J. Maly, Relaxation of Multiple Integrals in Sobolev Spaces Below the Growth Exponent for the Energy Density, Ann. Inst. Henri Poincaré Anal. Non. Linéaire, Vol. 14, 1997, no. 3, pp. 309-338. Zbl0868.49011MR1450951
  23. [23] I. Fonseca, S. Müller, P. Pedregal, Analysis of Concentration and Oscillation Effects Generated by Gradients. To appear in SIAM J. Math. Anal. Zbl0920.49009MR1177778
  24. [24] M. Giaquinta, G. Modica, J. Soúcek, Remarks on lower semicontinuity of quasiconvex integrals. NODEA Nonlinear Differential Equations Appl., Vol. 2, 1995, no. 4, pp. 573-588. Zbl0844.49011MR1356875
  25. [25] T. Iwaniec, C. Sbordone, On the integrability of the jacobian under minimal hypotheses, Arch. Rat. Mech. Anal., Vol. 119, 1992, pp. 129-143.. Zbl0766.46016MR1176362
  26. [26] R. Jordan, D. Kinderlehrer, An extended variational principle, Partial differential equations and applications, M. Dekker, 1996, pp. 187-200. Zbl0852.49003MR1371591
  27. [27] D. Kinderlehrer, P. Pedregal, Characterization of Young measures generated by gradients, Arch. Rat. Mech. Anal., Vol. 115, 1991, pp. 329-365. Zbl0754.49020MR1120852
  28. [28] D. Kinderlehrer, P. Pedregal, Weak convergence of integrands and the Young measure representation, SIAM J. Math. Anal., Vol. 23, 1992, pp. 1-19. Zbl0757.49014MR1145159
  29. [29] D. Kinderlehrer, P. Pedregal, Gradient Young measures generated by sequences in Sobolev spaces, J. Geom. Anal., Vol. 4, 1994, no 1, pp. 59-90. Zbl0808.46046MR1274138
  30. [30] J. Kristensen, Finite functionals and Young measures generated by gradients of Sobolev functions, Ph. D. Thesis, Technical University of Denmark, Kyngby, August 1994. 
  31. [31] K. Kuratowski, RYLL-NARDZEWSKI, A general theorem of selectors, Bull. Acad. Polon. Sci., Vol. XIII, 1966, no. 6, pp. 397-403. Zbl0152.21403MR188994
  32. [32] P. Marcellini, Approximation of quasiconvex functions, and lower semicontinuity of multiple integrals, Manuscripta Math., Vol. 51, 1985, pp. 1-28. Zbl0573.49010MR788671
  33. [33] P. Marcellini, On the definition and the lower semicontinuity of certain quasiconvex integrals, Ann. Inst. H. Poincaré, Analyse non Linéaire, Vol. 3, 1986, pp. 391-409. Zbl0609.49009MR868523
  34. [34] J. Maly, Weak lower semicontinuity of polyconvex integrals., Proc. Roy. Soc. Edinburgh., Sect A, Vol. 123, 1993, no.4, pp. 681-691. Zbl0813.49017MR1237608
  35. [35] J. Maly, Lower semicontinuity of quasiconvex integrals, Manuscripta Math., Vol. 85, 1994, no.3-4, pp. 419-428. Zbl0862.49017MR1305752
  36. [36] C.B. Morrey, Quasi-convexity and the lower semicontinuity of multiple integrals, Pasific J. Math., Vol. 2, 1952, pp. 25-53. Zbl0046.10803MR54865
  37. [37] C.B. Morrey, Multiple integrals in the Calculus of Variations. Springer-Verlag, 1966. Zbl0142.38701MR202511
  38. [38] P. Marcellini, C. Sbordone, Semicontinuity problems in the Calculus of Variations, Nonlinear Anal., Vol. 4, 1980, pp. 241-257. Zbl0537.49002MR563807
  39. [39] P. Pedregal, Jensen's inequality in the calculus of variations, Differential and Integral Equations, Vol. 7, 1994, pp. 57-72. Zbl0810.49013MR1250939
  40. [40] P. Pedregal, Parametrized measures and variational principles. Birkhäuser, 1997. Zbl0879.49017MR1452107
  41. [41] Y.G. Reshetnyak, General theorems on semicontinuity and convergence with a functionals, Sibirsk. Math. Z., Vol. 8, 1967, pp. 1051-1069. Zbl0179.20902MR220127
  42. [42] Y.G. Reshetnyak, Space mappings with bounded distortion. Translations of Mathematical Monographs, 73, American Mathematical Society. Providence, RI, 1989. Zbl0667.30018MR994644
  43. [43] Y.G. Reshetnyak, A convergence theorem for functionals on additive vector-valued set functions, Sibirsk. Mat. Z., Vol. 2, 1961, pp. 115-126. Zbl0156.14802MR130344
  44. [44] M. Sychev, Necessary and sufficient conditions in theorems of lower semicontinuity and convergence with a functional, Russ. Acad. Sci. Sb. Math., Vol. 186, 1995, pp. 847-878. Zbl0835.49009MR1349015
  45. [45] M. Sychev, Young measure approach to characterization of behavior of integral functionals on weakly convergent sequences by means of their integrands, Ann. Inst. H. Poincaré Anal. Non. Linéaire, Vol. 15, 1998, no. 6. Zbl0923.49009MR1650962
  46. [46] M. Sychev, Young measures as measurable functions (in preparation). 
  47. [47] M. Sychev, Characterization of homogeneous gradient Young measures in the case of arbitrary integrands. Report No. 98-216, May 98, Carnegie Mellon University. 
  48. [48] M. Sychev, New approach to Young measure theory, relaxation and convergence in energy. SISSA preprint 44/97/M, March 1997, Triest. 
  49. [49] L. Tartar, Compensated compactness and applications to partial differential equations, in Nonlinear analysis and mechanics: Heriot-Watt Symposium, Vol. IV, PitmanResearch Notes in Mathematics, Vol. 39, 1979, pp. 136-212. Zbl0437.35004MR584398
  50. [50] L. Tartar, The compensated compactness method applied to systems of conservations laws, in Systems of Nonlinear Partial Differential Equations, J. M. Ball ed., NATO ASI Series, Vol. CIII, Reidel, 1982. Zbl0536.35003MR725524
  51. [51] M. Valadier, Young measures, in Methods of Nonconvex Analysis, ed. A. Cellina, Lecture Notes in Math., Vol. 1446, 1990, pp. 152-188. Zbl0738.28004MR1079763
  52. [52] G.V. Vasilenko, Convergence with a functional, Sibirsk. Math. Z., Vol. 27, 1986, no. 1, pp. 26-34. Zbl0608.49011MR847411
  53. [53] A. Visintin, Strong convergence results related to strict convexity, Comm. Partial Differential Equations, Vol. 9, 1984, pp. 439-466. Zbl0545.49019MR741216
  54. [54] L.C. Young, Lectures on the Calculus of Variations and Optimal Control Theory. Saunders, 1969 (reprinted by Chelsea1980). Zbl0177.37801MR259704
  55. [55] L.C. Young, Generalized curves and the existence of an attained absolute minimum in the Calculus of Variations, Comptes Rendus de la Société des Sciences et des Lettres de Varsovie, classe III, Vol. 30, 1937, pp. 212-234. Zbl0019.21901JFM63.1064.01
  56. [56] W.P. Ziemer, Weakly differentiable functions. Springer-Verlag, New-York, 1989. Zbl0692.46022MR1014685

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.