Conjugate and cut loci of a two-sphere of revolution with application to optimal control
Bernard Bonnard; Jean-Baptiste Caillau; Robert Sinclair; Minoru Tanaka
Annales de l'I.H.P. Analyse non linéaire (2009)
- Volume: 26, Issue: 4, page 1081-1098
- ISSN: 0294-1449
Access Full Article
topHow to cite
topBonnard, Bernard, et al. "Conjugate and cut loci of a two-sphere of revolution with application to optimal control." Annales de l'I.H.P. Analyse non linéaire 26.4 (2009): 1081-1098. <http://eudml.org/doc/78880>.
@article{Bonnard2009,
author = {Bonnard, Bernard, Caillau, Jean-Baptiste, Sinclair, Robert, Tanaka, Minoru},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {conjugate locus; cut locus; optimal control; space and quantum mechanics},
language = {eng},
number = {4},
pages = {1081-1098},
publisher = {Elsevier},
title = {Conjugate and cut loci of a two-sphere of revolution with application to optimal control},
url = {http://eudml.org/doc/78880},
volume = {26},
year = {2009},
}
TY - JOUR
AU - Bonnard, Bernard
AU - Caillau, Jean-Baptiste
AU - Sinclair, Robert
AU - Tanaka, Minoru
TI - Conjugate and cut loci of a two-sphere of revolution with application to optimal control
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 4
SP - 1081
EP - 1098
LA - eng
KW - conjugate locus; cut locus; optimal control; space and quantum mechanics
UR - http://eudml.org/doc/78880
ER -
References
top- [1] A. Agrachev, U. Boscain, M. Sigalotti, A Gauss–Bonnet like formula on two-dimensional almost Riemannian manifolds, Preprint SISSA 55/2006/M, 2006. Zbl1198.49041MR2384632
- [2] Bao D., Robles C., Shen Z., Zermelo navigation on Riemannian manifolds, J. Differential Geom.66 (3) (2004) 377-435. Zbl1078.53073MR2106471
- [3] Berger M., A Panoramic View of Riemannian Geometry, Springer-Verlag, Berlin, 2003. Zbl1038.53002MR2002701
- [4] Bonnard B., Caillau J.-B., Optimality results in orbit transfer, C. R. Acad. Sci. Paris, Ser. I345 (2007) 319-324. Zbl1122.49018MR2359089
- [5] Bonnard B., Caillau J.-B., Dujol R., Energy minimization of single-input orbit transfer by averaging and continuation, Bull. Sci. Math.130 (8) (2006) 707-719. Zbl1136.93046MR2276200
- [6] Bonnard B., Caillau J.-B., Riemannian metric of the averaged energy minimization problem in orbital transfer with low thrust, Ann. Inst. H. Poincaré Anal. Non Linéaire24 (3) (2007) 395-411. Zbl1127.49017MR2319940
- [7] B. Bonnard, D. Sugny, Optimal control with applications in space and quantum dynamics, Preprint Institut math. Bourgogne, 2007. Zbl1266.49002
- [8] B. Bonnard, J.B. Caillau, M. Tanaka, One-parameter family of Clairaut–Liouville metrics with application to optimal control, HAL preprint No 00177686 (2007), url: hal.archives-ouvertes.fr/hal-00177686.
- [9] Bonnard B., Chyba M., Singular Trajectories and Their Role in Control Theory, Springer-Verlag, Berlin, 2003. Zbl1022.93003MR1996448
- [10] Gluck H., Singer D., Scattering of geodesic fields I and II, Ann. of Math.108 (1978) 347-372, and 110 (1979) 205–225. Zbl0436.53047MR506991
- [11] Gravesen J., Markvorsen S., Sinclair R., Tanaka M., The cut locus of a torus of revolution, Asian J. Math.9 (2005) 103-120. Zbl1080.53005MR2150694
- [12] Hebda J.J., Metric structure of cut loci in surfaces and Ambrose's problem, J. Differential Geom.40 (1994) 621-642. Zbl0823.53031MR1305983
- [13] Itoh J.I., Kiyohara K., The cut loci and the conjugate loci on ellipsoids, Manuscripta Math.114 (2004) 247-264. Zbl1076.53042MR2067796
- [14] K. Fleischmann, Die geodätischen Linien auf Rotationsflächen, Liegnitz, Dissertation, Seyffarth, 1915. Persistent URL: http://www-gdz.sub.uni-goettingen.de/cgi-bin/digbib.cgi?PPN317487884. JFM45.1372.05
- [15] Myers S.B., Connections between Differential Geometry and Topology: I. Simply connected surfaces and II. Closed surfaces, Duke Math. J.1 (1935) 376-391, and 2 (1936) 95–102. Zbl0012.27502MR1545884JFM61.0834.03
- [16] Poincaré H., Sur les lignes géodésiques des surfaces convexes, Trans. Amer. Math. Soc.6 (1905) 237-274. Zbl36.0669.01MR1500710JFM36.0669.01
- [17] Sakai T., Riemannian Geometry, Transl. Math. Monogr., vol. 149, American Mathematical Society, Providence, RI, 1996. Zbl0886.53002MR1390760
- [18] Shiohama K., Tanaka M., Cut loci and distance spheres on Alexandrov surfaces, in: Actes de la table ronde de géométrie différentielle en l'honneur de Marcel Berger, Collection Soc. Math. France, vol. 1, Séminaires & Congrès, 1996, pp. 531-560. Zbl0874.53032MR1427770
- [19] Shiohama K., Shioya T., Tanaka M., The Geometry of Total Curvature on Complete Open Surfaces, Cambridge Tracts in Mathematics, vol. 159, 2003. Zbl1086.53056MR2028047
- [20] Sinclair R., Tanaka M., A bound on the number of endpoints of the cut locus, LMS J. Comput. Math.9 (2006) 21-39. Zbl1111.53004MR2199583
- [21] Sinclair R., Tanaka M., The cut locus of a two-sphere of revolution and Toponogov's comparison theorem, Tohoku Math. J.59 (2) (2007) 379-399. Zbl1158.53033MR2365347
- [22] Sugny D., Kontz C., Jauslin H., Time-optimal control of a two-level dissipative quantum system, Phys. Rev. A76 (2007) 023419.
Citations in EuDML Documents
top- Bernard Bonnard, Jean-Baptiste Caillau, Gabriel Janin, Conjugate-cut loci and injectivity domains on two-spheres of revolution
- Bernard Bonnard, Olivier Cots, Jean-Baptiste Pomet, Nataliya Shcherbakova, Riemannian metrics on 2D-manifolds related to the Euler−Poinsot rigid body motion
- Bernard Bonnard, Nataliya Shcherbakova, Dominique Sugny, The smooth continuation method in optimal control with an application to quantum systems
- Ugo Boscain, Camille Laurent, The Laplace-Beltrami operator in almost-Riemannian Geometry
- Bernard Bonnard, Nataliya Shcherbakova, Dominique Sugny, The smooth continuation method in optimal control with an application to quantum systems
- Roberta Ghezzi, On almost-Riemannian surfaces
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.