Stable real cohomology of arithmetic groups

Armand Borel

Annales scientifiques de l'École Normale Supérieure (1974)

  • Volume: 7, Issue: 2, page 235-272
  • ISSN: 0012-9593

How to cite

top

Borel, Armand. "Stable real cohomology of arithmetic groups." Annales scientifiques de l'École Normale Supérieure 7.2 (1974): 235-272. <http://eudml.org/doc/81938>.

@article{Borel1974,
author = {Borel, Armand},
journal = {Annales scientifiques de l'École Normale Supérieure},
language = {eng},
number = {2},
pages = {235-272},
publisher = {Elsevier},
title = {Stable real cohomology of arithmetic groups},
url = {http://eudml.org/doc/81938},
volume = {7},
year = {1974},
}

TY - JOUR
AU - Borel, Armand
TI - Stable real cohomology of arithmetic groups
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1974
PB - Elsevier
VL - 7
IS - 2
SP - 235
EP - 272
LA - eng
UR - http://eudml.org/doc/81938
ER -

References

top
  1. [1] H. BASS, Unitary algebraic K-theory, Algebraic K-theory III (Springer Lecture Notes, vol. 343, 1973, p. 57-209). Zbl0299.18005MR51 #8211
  2. [2] A. BOREL, Cohomologie réelle stable de groupes S-arithmétiques (C. R. Acad. Sc., Paris, t. 274, série A, 1972, p. 1700-1702). Zbl0235.57015MR46 #7400
  3. [3] A. BOREL, Some properties of arithmetic quotients of symmetric spaces and an extension theorem (J. Diff. Geometry, vol. 6, 1972, p. 543-560). Zbl0249.32018MR49 #3220
  4. [4] A. BOREL and J.-P. SERRE, Corners and arithmetic groups (Comm. Math. Helv., vol. 48, 1974, p. 244-297). Zbl0274.22011MR52 #8337
  5. [5] A. BOREL and J. TITS, Groupes réductifs (Publ. Math. I. H. E. S., vol. 27, 1965, p. 55-150). Zbl0145.17402MR34 #7527
  6. [6] N. BOURBAKI, Groupes et algèbres de Lie, chap. IV, V, VI (Act. Sci. Ind., 1337, Hermann, Paris, 1968). MR39 #1590
  7. [7] H. CARTAN, Périodicité des groupes d'homotopie stables des groupes classiques, d'après Bott (Séminaire E. N. S., 12e année, Notes polycopiées, Institut H. Poincaré, Paris, 1961). Zbl0115.17201
  8. [8] W. T. VAN EST, On the algebraic cohomology concepts in Lie groups II (Proc. Konink. Nederl. Akad. v. Wet., Series A, vol. 58, 1955, p. 286-294). Zbl0067.26202MR17,61b
  9. [9] H. GARLAND, A finiteness theorem for K2 of a number field (Annals of Math., vol. 94, n° 2, 1971, p. 534-548). Zbl0247.12103MR45 #6785
  10. [10] H. GARLAND and W. C. HSIANG, A square integrability criterion for the cohomology of arithmetic groups (Proc. Nat. Acad. Sci. USA, vol. 59, 1968, p. 354-360). Zbl0174.31302MR37 #4084
  11. [11] R. GODEMENT, Théorie des faisceaux (Act. Sci. Ind., p. 1252, Hermann, Paris, 1958). Zbl0080.16201MR21 #1583
  12. [12] A. GROTHENDIECK, Sur quelques points d'algèbre homologique (Tôhoku Math. J., vol. 9, 1957, p. 119-221). Zbl0118.26104MR21 #1328
  13. [13] G. HARDER, On the cohomology of SL(2, ɒ) (preprint). 
  14. [14] HARISH-CHANDRA, Discrete series for semi-simple Lie groups II, (Acta Math., vol. 116, 1966, p. 1-111). Zbl0199.20102MR36 #2745
  15. [15] G. HOCHSCHILD and G. D. MOSTOW, Cohomology of Lie groups, III (Illinois J. Math., vol. 6, 1962, p. 367-401). Zbl0111.03302MR26 #5092
  16. [16] S. KANEYUKI and T. NAGANO, Quadratic forms related to symmetric spaces (Osaka Math. J., vol. 14, 1962, p. 241-252). Zbl0114.13403MR28 #2564
  17. [17] M. KAROUBI, Périodicité de la K-théorie hermitienne, Algebraic K-theory III (Springer Lecture Notes, vol. 343, 1973, p. 301-411). Zbl0274.18016MR52 #3284
  18. [18] M. KNESER, Lectures on Galois cohomology of classical groups (Notes by P. JOTHILINGAM, Tata Institute of Fundamental Research, Bombay, 1969). Zbl0246.14008MR49 #5195
  19. [19] Y. MATSUSHIMA, On Betti numbers of compact, locally symmetric Riemannian manifolds (Osaka Math. J., vol. 14, 1962, p. 1-20). Zbl0118.38401MR25 #4549
  20. [20] Y. MATSUSHIMA and S. MURAKAMI, On certain cohomology groups attached to hermitian symmetric spaces (Osaka J. of Math., vol. 2, 1965, p. 1-35). Zbl0142.19503MR32 #1728
  21. [21] D. QUILLEN, Cohomology of groups (Actes Congrès Int. Math. Nice, vol. 2, 1970, p. 47-51). Zbl0225.18011MR58 #7627a
  22. [22] G. DE RHAM, Variétés Différentiables (Act. Sci. Ind., 1222 b, 3e éd., Hermann, Paris, 1973). Zbl0284.58001
  23. [23] A. WEIL, Adeles and algebraic groups (Notes by M. DEMAZURE and T. ONO, The Institute for Advanced Study, Princeton, 1961). 

Citations in EuDML Documents

top
  1. Bjørn Jahren, K-theory, flat bundles and the Borel classes
  2. Armand Borel, Cohomologie de S L n et valeurs de fonctions zêta aux points entiers
  3. Jean-Louis Loday, Homotopie des espaces de concordances
  4. Kevin P. Knudson, The homology of special linear groups over polynomial rings
  5. Georgios Pappas, Cubic structures and ideal class groups
  6. Christophe Soulé, Régulateurs
  7. Jun Yang, On the real cohomology of arithmetic groups and the rank conjecture for number fields
  8. Pierre Deligne, Alexander B. Goncharov, Groupes fondamentaux motiviques de Tate mixte
  9. Jens Franke, Harmonic analysis in weighted L 2 -spaces
  10. Marc Levine, The indecomposable K 3 of fields

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.