Zariski's conjecture and related problems

Madhav V. Nori

Annales scientifiques de l'École Normale Supérieure (1983)

  • Volume: 16, Issue: 2, page 305-344
  • ISSN: 0012-9593

How to cite

top

Nori, Madhav V.. "Zariski's conjecture and related problems." Annales scientifiques de l'École Normale Supérieure 16.2 (1983): 305-344. <http://eudml.org/doc/82119>.

@article{Nori1983,
author = {Nori, Madhav V.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Zariski conjecture; abelianness of fundamental group; complement of divisor; nodal curve on surface; deformation theory},
language = {eng},
number = {2},
pages = {305-344},
publisher = {Elsevier},
title = {Zariski's conjecture and related problems},
url = {http://eudml.org/doc/82119},
volume = {16},
year = {1983},
}

TY - JOUR
AU - Nori, Madhav V.
TI - Zariski's conjecture and related problems
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1983
PB - Elsevier
VL - 16
IS - 2
SP - 305
EP - 344
LA - eng
KW - Zariski conjecture; abelianness of fundamental group; complement of divisor; nodal curve on surface; deformation theory
UR - http://eudml.org/doc/82119
ER -

References

top
  1. [A] S. ABHYANKAR, Tame Coverings of Fundamental Groups of Algebraic Varieties I, II (Amer. J. Math., Vol. 81, 1959, p. 46-94 ; vol. 82, 1960. 
  2. [D] P. DELIGNE, Le groupe fondamental du complément d'une courbe plane n'ayant que des points doubles ordinair est abelian (Séminaire Bourbaki, n° 543, novembre 1979). Zbl0478.14008
  3. [D2] A. DOUADY, Le problème des modules pour les sous-espaces analytiques compact d'un espace analytique donné (Annales de Institut Fourier, Vol. 16, 1966, p. 1-96). Zbl0146.31103MR34 #2940
  4. [F] W. FULTON, On the Fundamental group of the Complement of a Nodal Curve (Annals of Math., vol. 111, 1980, p. 407-409). Zbl0406.14008MR82e:14035
  5. [H] H. HIRONAKA, Resolution of Singularities, (Annals of Math., Vol. 79, 1964, p. 109-326). Zbl0122.38603MR33 #7333
  6. [M] YU MANIN, Lectures on the K-functor in Algebraic Geometry (Russian Math. Surveys, Vol. 24, 1969). Zbl0204.21302MR42 #265
  7. [M1] D. MUMFORD, Geometric Invariant Theory, Springer Verlag, Ergebniss der mathematik, band 34. Zbl0147.39304
  8. [N2] M. V. NORI, On the Andreotti-Frankel Method (to appear). 
  9. [Z] ZARISKI, On the Problem of Existence of Algebraic Functions of two Variables Possessing a Given Branch Curve (Amer. J. Math., Vol. 51, 1929, p. 305-328). Zbl55.0806.01JFM55.0806.01
  10. [DG] M. DEMAZURE and P. GABRIEL, Groupes Algebriques, Tome 1, North-Holland Publishers. 
  11. [FAC] J.-P. SERRE, Annals of Math., Vol. 61, 1955, p. 197-278. Zbl0067.16201MR16,953c
  12. [GAGA] J.-P. SERRE, Ann. Inst. Fourier, Vol. 6, 1956, p. 1-42. Zbl0075.30401MR18,511a
  13. [SGAI] Revetements Etales et Groupe Fondamental, Springer-Verlag (Lecture Notes, N0. 224, 1971). Zbl0234.14002
  14. [M2] D. MUMFORD, Abelian Varieties, Oxford Univ. Press, Bombay. 
  15. [N3] M. V. NORI, Varieties with no Smooth Embeddings, in C. P. RAMANUJAM, A Tribute, Oxford Univ. Press, Bombay. Zbl0426.14006
  16. [EGA] A. GROTHENDIECK, I.H.E.S., Publications, Chapter IV, 1964. 

Citations in EuDML Documents

top
  1. R. V. Gurjar, A. R. Shastri, Covering spaces of an elliptic surface
  2. Brendon Lasell, Complex local systems and morphisms of varieties
  3. Brendon Lasell, Mohan Ramachandran, Observations on harmonic maps and singular varieties
  4. Fredéric Campana, Remarques sur le revêtement universel des variétés kählériennes compactes
  5. Mario Salvetti, Arrangements of lines and monodromy of plane curves
  6. José Ignacio Cogolludo-Agustín, Braid Monodromy of Algebraic Curves
  7. O. Calvo-Andrade, Positivity, vanishing theorems and rigidity of Codimension one Holomorphic Foliations

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.