Decay of correlations in one-dimensional dynamics

Henk Bruin; Stefano Luzzatto; Sebastian Van Strien

Annales scientifiques de l'École Normale Supérieure (2003)

  • Volume: 36, Issue: 4, page 621-646
  • ISSN: 0012-9593

How to cite

top

Bruin, Henk, Luzzatto, Stefano, and Van Strien, Sebastian. "Decay of correlations in one-dimensional dynamics." Annales scientifiques de l'École Normale Supérieure 36.4 (2003): 621-646. <http://eudml.org/doc/82613>.

@article{Bruin2003,
author = {Bruin, Henk, Luzzatto, Stefano, Van Strien, Sebastian},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {interval maps; summability condition; central limit theorem; decay of correlations},
language = {eng},
number = {4},
pages = {621-646},
publisher = {Elsevier},
title = {Decay of correlations in one-dimensional dynamics},
url = {http://eudml.org/doc/82613},
volume = {36},
year = {2003},
}

TY - JOUR
AU - Bruin, Henk
AU - Luzzatto, Stefano
AU - Van Strien, Sebastian
TI - Decay of correlations in one-dimensional dynamics
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2003
PB - Elsevier
VL - 36
IS - 4
SP - 621
EP - 646
LA - eng
KW - interval maps; summability condition; central limit theorem; decay of correlations
UR - http://eudml.org/doc/82613
ER -

References

top
  1. [1] Baladi V., Viana M., Strong stochastic stability and rate of mixing for unimodal maps, Ann. Sci. Éc. Norm. Sup.29 (1996) 483-517. Zbl0868.58051MR1386223
  2. [2] Benedicks M., Carleson L., On iterations of x↦1−ax2 on (−1,1), Ann. Math.122 (1985) 1-25. Zbl0597.58016
  3. [3] Benedicks M., Carleson L., The dynamics of the Hénon map, Ann. Math.133 (1991) 73-169. Zbl0724.58042MR1087346
  4. [4] Blokh A., Lyubich M., Measurable dynamics of S-unimodal maps, Ann. Sci. Éc. Norm. Sup.24 (1991) 545-573. Zbl0790.58024MR1132757
  5. [5] Bruin H., Luzzatto S., van Strien S., Decay of correlation in one-dimensional dynamics, Preprint IHÉS, 1999. Zbl1039.37021MR1858488
  6. [6] Bruin H., Keller G., Equilibrium states for S-unimodal maps, Ergodic Theory Dynam. Systems18 (1998) 765-789. Zbl0916.58020MR1645373
  7. [7] Bruin H., van Strien S., Expansion of derivatives in one-dimensional dynamics, Israel J. Math. (to appear). Zbl1122.37310MR2013358
  8. [8] Bruin H., van Strien S., Existence of acips for multimodal maps, in: Global Analysis of Dynamical Systems, Festschrift to Floris Takens for his 60th birthday, IOP Publishing, Bristol, 2001, pp. 433-447. Zbl1198.37066
  9. [9] Collet P., Statistics of closes return times for some non uniformly hyperbolic systems, Ergodic Theory Dynam. Systems21 (2001) 401-420. Zbl1002.37019MR1827111
  10. [10] Guckenheimer J., Sensitive dependence on initial conditions for unimodal maps, Comm. Math. Phys.70 (1979) 133-160. Zbl0429.58012MR553966
  11. [11] Jakobson M.V., Absolutely continuous invariant measures for one-parameter families of one-dimensional maps, Comm. Math. Phys.81 (1981) 39-88. Zbl0497.58017MR630331
  12. [12] Keller G., Exponents, attractors, and Hopf decompositions for interval maps, Ergodic Theory Dynam. Systems10 (1990) 717-744. Zbl0715.58020MR1091423
  13. [13] Keller G., Nowicki T., Spectral theory, zeta functions and the distribution of periodic points for Collet–Eckmann maps, Comm. Math. Phys.149 (1992) 31-69. Zbl0763.58024MR1182410
  14. [14] Kozlovski O., Getting rid of the negative Schwarzian derivative condition, Ann. Math.152 (2000) 743-762. Zbl0988.37044MR1815700
  15. [15] Ledrappier F., Some properties of absolutely continuous measures of an interval, Ergodic Theory Dynam. Systems1 (1981) 77-93. Zbl0487.28015MR627788
  16. [16] Liverani C., Saussol B., Vaienti S., A probabilistic approach to intermittency, Ergodic Theory Dynam. Systems19 (1999) 671-686. Zbl0988.37035MR1695915
  17. [17] Lyubich M., Milnor J., The Fibonacci unimodal map, J. Amer. Math. Soc.6 (1993) 425-457. Zbl0778.58040MR1182670
  18. [18] Mañé R., Hyperbolicity, sinks and measure in one dimensional dynamics, Comm. Math. Phys.100 (1985) 495-524. Zbl0583.58016MR806250
  19. [19] de Melo W., van Strien S., One-Dimensional Dynamics, Springer, 1993. Zbl0791.58003MR1239171
  20. [20] Misiurewicz M., Absolutely continuous measures for certain maps of an interval, Publ. IHÉS53 (1981) 17-51. Zbl0477.58020MR623533
  21. [21] Nowicki T., Sands D., Non-uniform hyperbolicity and universal bounds for S-unimodal maps, Invent. Math.132 (1998) 633-680. Zbl0908.58016MR1625708
  22. [22] Nowicki T., van Strien S., Absolutely continuous measures under a summability condition, Invent. Math.105 (1991) 123-136. Zbl0736.58030MR1109621
  23. [23] Przytycki F., Iterations of holomorphic Collet–Eckmann maps: conformal and invariant measures, Trans. Amer. Math. Soc.350 (1998) 717-742. Zbl0892.58063MR1407501
  24. [24] van Strien S., Vargas E., Real bounds, ergodicity and negative Schwarzian for multimodal maps, Preprint, 2000 and 2001. Zbl1073.37043
  25. [25] Thunberg H., Positive Lyapunov exponents for maps with flat critical points, Ergodic Theory Dynam. Systems (1998) 767-807. Zbl0966.37011MR1695920
  26. [26] Tsujii M., Small random perturbations of one-dimensional dynamical systems and Margulis–Pesin entropy formula, Random Comput. Dynam.1 (1992) 59-89. Zbl0783.58018MR1181380
  27. [27] Tsujii M., Positive Lyapunov exponents in families of one-dimensional dynamical systems, Invent. Math.111 (1993) 113-137. Zbl0787.58029MR1193600
  28. [28] Vargas E., Measure of minimal sets of polymodal maps, Ergodic Theory Dynam. Systems16 (1996) 159-178. Zbl0851.58015MR1375131
  29. [29] Viana M., Stochastic Dynamics of Deterministic Systems, Lecture Notes, 21, Braz. Math. Colloqium, 1997. 
  30. [30] Young L.-S., Decay of correlations of certain quadratic maps, Comm. Math. Phys.146 (1992) 123-138. Zbl0760.58030MR1163671
  31. [31] Young L.-S., Statistical properties of dynamical systems with some hyperbolicity, Ann. of Math.147 (1998) 585-650. Zbl0945.37009MR1637655
  32. [32] Young L.-S., Recurrence times and rates of mixing, Israel J. Math.110 (1999) 153-188. Zbl0983.37005MR1750438

Citations in EuDML Documents

top
  1. Sébastien Gouëzel, Berry–Esseen theorem and local limit theorem for non uniformly expanding maps
  2. Feliks Przytycki, Juan Rivera-Letelier, Statistical properties of topological Collet–Eckmann maps
  3. José F. Alves, Stefano Luzzatto, Vilton Pinheiro, Markov structures and decay of correlations for non-uniformly expanding dynamical systems
  4. Henk Bruin, Mike Todd, Equilibrium states for interval maps: the potential - t log | D f |
  5. Henk Bruin, Weixiao Shen, Sebastian Van Strien, Existence of unique SRB-measures is typical for real unicritical polynomial families
  6. Viviane Baladi, Daniel Smania, Linear response for smooth deformations of generic nonuniformly hyperbolic unimodal maps

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.