On the barotropic motion of compressible perfect fluids
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1981)
- Volume: 8, Issue: 2, page 317-351
- ISSN: 0391-173X
Access Full Article
topHow to cite
topBeirão Da Veiga, H.. "On the barotropic motion of compressible perfect fluids." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 8.2 (1981): 317-351. <http://eudml.org/doc/83861>.
@article{BeirãoDaVeiga1981,
author = {Beirão Da Veiga, H.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {initial value problem; barotropic motion; compressible perfect; connected domain},
language = {eng},
number = {2},
pages = {317-351},
publisher = {Scuola normale superiore},
title = {On the barotropic motion of compressible perfect fluids},
url = {http://eudml.org/doc/83861},
volume = {8},
year = {1981},
}
TY - JOUR
AU - Beirão Da Veiga, H.
TI - On the barotropic motion of compressible perfect fluids
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1981
PB - Scuola normale superiore
VL - 8
IS - 2
SP - 317
EP - 351
LA - eng
KW - initial value problem; barotropic motion; compressible perfect; connected domain
UR - http://eudml.org/doc/83861
ER -
References
top- [1] H. Beirão Da Veiga, On an Euler type equation in hydrodynamics, Ann. Mat. Pura Appl., 125 (1980), pp. 279-294. Zbl0576.76010MR605211
- [2] H. Beirão Da Veiga, Un théorème d'existence dans la dinamique des fluides compressibles, C. R. Acad. Sci. Paris, 289 (1979), pp. 297-299. MR558813
- [3] H. Beirão Da Veiga, Recenti risultati sul moto dei fluidi perfetti e compressibili, to appear. Zbl0486.76095
- [4] D.G. Ebin, The initial boundary value problem for sub-sonic fluid motion, Comm. Pure Appl. Mat., 32 (1979), pp. 1-19. Zbl0378.76043MR508916
- [5] C. Foias - R. Temam, Remarques sur les équations de Navier-Stokes stationnaires et les phénomènes successifs de bifurcation, Ann. Scuola Norm. Sup. Pisa, 5 (1978), pp. 29-63. Zbl0384.35047MR481645
- [6] D. Graffi, Il teorema di unicità nella dinamica dei fluidi compressibili, J. Rat. Mech. Analysis, 2 (1953), pp. 99-106. Zbl0050.19604MR52270
- [7] T. Kato, On classical solutions of the two-dimensional non-stationary Euler equation, Arch. Rational Mech. Anal., 25 (1967), pp. 188-200. Zbl0166.45302MR211057
- [8] T. Kato, Quasi-linear equations of evolution, with applications to partial differential equations, Spectral theory and differential equations, Lecture Notes in Mathematics448, Springer (1975), pp. 25-70. Zbl0315.35077MR407477
- [9] T. Kato, The Cauchy problem for quasi-linear symmetric hyperbolic systems, Arch. Rational Mech. Anal., 58 (1975), pp. 181-205. Zbl0343.35056MR390516
- [10] L. Landau - E. Lifchitz, Mécanique des fluides, éditions MIR, Moscow (1971) (translated from russian).
- [11] S. Miyatake, Mixed problems for hyperbolic equation of second order, J. Math. Kyoto Univ., 13 (1973), pp. 435-487. Zbl0281.35052MR333467
- [12] S. Miyatake, Mixed problems for hyperbolic equations of second order with first order complex boundary operators, Japan. J. Math., 1 (1975), pp. 111-158. Zbl0337.35047MR430542
- [13] S. Miyatake, A sharp form of the existence theorem for hyperbolic mixed problems of second order, J. Math. Kyoto Univ., 17 (1977), pp. 199-223. Zbl0374.35028MR492901
- [14] L. Sédov, Mécanique des milieux continus, vol. I, éditions MIR, Moscow(1975) (translated from russian).
- [15] J. Serrin, On the uniqueness of compressible fluid motions, Arch. Rational Mech. Anal., 3 (1959), pp. 271-288. Zbl0089.19103MR106646
- [16] J. Serrin, Mathematical principles of classical fluid mechanics, Handbuch der Physik, vol. VIII/1, Springer-Verlag, Berlin-Göttingen -Heidelberg (1959). MR108116
Citations in EuDML Documents
top- Paolo Secchi, On nonviscous compressible fluids in a time-dependent domain
- H. Beirão da Veiga, The initial-boundary value problem for the non-barotropic compressible Euler equations : structural-stability and data dependence
- Paolo Secchi, On the motion of nonviscous compressible fluids in domains with boundary
- Jean-François Coulombel, Paolo Secchi, Nonlinear compressible vortex sheets in two space dimensions
- Paolo Secchi, Existence theorems for compressible viscous fluids having zero shear viscosity
- Fanghua Lin, Ping Zhang, Semiclassical Limit of the cubic nonlinear Schrödinger Equation concerning a superfluid passing an obstacle
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.