On the barotropic motion of compressible perfect fluids

H. Beirão Da Veiga

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1981)

  • Volume: 8, Issue: 2, page 317-351
  • ISSN: 0391-173X

How to cite

top

Beirão Da Veiga, H.. "On the barotropic motion of compressible perfect fluids." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 8.2 (1981): 317-351. <http://eudml.org/doc/83861>.

@article{BeirãoDaVeiga1981,
author = {Beirão Da Veiga, H.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {initial value problem; barotropic motion; compressible perfect; connected domain},
language = {eng},
number = {2},
pages = {317-351},
publisher = {Scuola normale superiore},
title = {On the barotropic motion of compressible perfect fluids},
url = {http://eudml.org/doc/83861},
volume = {8},
year = {1981},
}

TY - JOUR
AU - Beirão Da Veiga, H.
TI - On the barotropic motion of compressible perfect fluids
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1981
PB - Scuola normale superiore
VL - 8
IS - 2
SP - 317
EP - 351
LA - eng
KW - initial value problem; barotropic motion; compressible perfect; connected domain
UR - http://eudml.org/doc/83861
ER -

References

top
  1. [1] H. Beirão Da Veiga, On an Euler type equation in hydrodynamics, Ann. Mat. Pura Appl., 125 (1980), pp. 279-294. Zbl0576.76010MR605211
  2. [2] H. Beirão Da Veiga, Un théorème d'existence dans la dinamique des fluides compressibles, C. R. Acad. Sci. Paris, 289 (1979), pp. 297-299. MR558813
  3. [3] H. Beirão Da Veiga, Recenti risultati sul moto dei fluidi perfetti e compressibili, to appear. Zbl0486.76095
  4. [4] D.G. Ebin, The initial boundary value problem for sub-sonic fluid motion, Comm. Pure Appl. Mat., 32 (1979), pp. 1-19. Zbl0378.76043MR508916
  5. [5] C. Foias - R. Temam, Remarques sur les équations de Navier-Stokes stationnaires et les phénomènes successifs de bifurcation, Ann. Scuola Norm. Sup. Pisa, 5 (1978), pp. 29-63. Zbl0384.35047MR481645
  6. [6] D. Graffi, Il teorema di unicità nella dinamica dei fluidi compressibili, J. Rat. Mech. Analysis, 2 (1953), pp. 99-106. Zbl0050.19604MR52270
  7. [7] T. Kato, On classical solutions of the two-dimensional non-stationary Euler equation, Arch. Rational Mech. Anal., 25 (1967), pp. 188-200. Zbl0166.45302MR211057
  8. [8] T. Kato, Quasi-linear equations of evolution, with applications to partial differential equations, Spectral theory and differential equations, Lecture Notes in Mathematics448, Springer (1975), pp. 25-70. Zbl0315.35077MR407477
  9. [9] T. Kato, The Cauchy problem for quasi-linear symmetric hyperbolic systems, Arch. Rational Mech. Anal., 58 (1975), pp. 181-205. Zbl0343.35056MR390516
  10. [10] L. Landau - E. Lifchitz, Mécanique des fluides, éditions MIR, Moscow (1971) (translated from russian). 
  11. [11] S. Miyatake, Mixed problems for hyperbolic equation of second order, J. Math. Kyoto Univ., 13 (1973), pp. 435-487. Zbl0281.35052MR333467
  12. [12] S. Miyatake, Mixed problems for hyperbolic equations of second order with first order complex boundary operators, Japan. J. Math., 1 (1975), pp. 111-158. Zbl0337.35047MR430542
  13. [13] S. Miyatake, A sharp form of the existence theorem for hyperbolic mixed problems of second order, J. Math. Kyoto Univ., 17 (1977), pp. 199-223. Zbl0374.35028MR492901
  14. [14] L. Sédov, Mécanique des milieux continus, vol. I, éditions MIR, Moscow(1975) (translated from russian). 
  15. [15] J. Serrin, On the uniqueness of compressible fluid motions, Arch. Rational Mech. Anal., 3 (1959), pp. 271-288. Zbl0089.19103MR106646
  16. [16] J. Serrin, Mathematical principles of classical fluid mechanics, Handbuch der Physik, vol. VIII/1, Springer-Verlag, Berlin-Göttingen -Heidelberg (1959). MR108116

Citations in EuDML Documents

top
  1. Paolo Secchi, On nonviscous compressible fluids in a time-dependent domain
  2. H. Beirão da Veiga, The initial-boundary value problem for the non-barotropic compressible Euler equations : structural-stability and data dependence
  3. Paolo Secchi, On the motion of nonviscous compressible fluids in domains with boundary
  4. Jean-François Coulombel, Paolo Secchi, Nonlinear compressible vortex sheets in two space dimensions
  5. Paolo Secchi, Existence theorems for compressible viscous fluids having zero shear viscosity
  6. Fanghua Lin, Ping Zhang, Semiclassical Limit of the cubic nonlinear Schrödinger Equation concerning a superfluid passing an obstacle

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.