Conditional brownian motion and the boundary limits of harmonic functions
Bulletin de la Société Mathématique de France (1957)
- Volume: 85, page 431-458
- ISSN: 0037-9484
Access Full Article
topHow to cite
topDoob, J.L.. "Conditional brownian motion and the boundary limits of harmonic functions." Bulletin de la Société Mathématique de France 85 (1957): 431-458. <http://eudml.org/doc/86928>.
@article{Doob1957,
author = {Doob, J.L.},
journal = {Bulletin de la Société Mathématique de France},
keywords = {probability theory},
language = {eng},
pages = {431-458},
publisher = {Société mathématique de France},
title = {Conditional brownian motion and the boundary limits of harmonic functions},
url = {http://eudml.org/doc/86928},
volume = {85},
year = {1957},
}
TY - JOUR
AU - Doob, J.L.
TI - Conditional brownian motion and the boundary limits of harmonic functions
JO - Bulletin de la Société Mathématique de France
PY - 1957
PB - Société mathématique de France
VL - 85
SP - 431
EP - 458
LA - eng
KW - probability theory
UR - http://eudml.org/doc/86928
ER -
References
top- [1] R. BLUMENTHAL, An extended Markov property (Trans. Amer. math. Soc., t. 85, 1957, p. 52-72). Zbl0084.13602MR19,468g
- [2] M. BRELOT, Le problème de Dirichlet. Axiomatique et frontière de Martin (J. Math. pures et appl., 9e série, t. 35, 1956, p. 297-335). Zbl0071.10001MR20 #6607
- [3] M. BRELOT et G. CHOQUET, Espaces et lignes de Green (Ann. Inst. Fourier, Grenoble, t. 3, 1951-1952, p. 199-263). Zbl0046.32701MR16,34e
- [4] J. L. DOOB, Semimartingales and subharmonic functions (Trans. Amer. math. Soc., t. 77, 1954, p. 86-121). Zbl0059.12205MR16,269a
- [5] J. L. DOOB, Probability methods applied to the first boundary value problem [Proc. Third Berkeley Symp. math. Stat. and Prob., t. 2, 1956, p. 49-80 (1955, Berkeley, Calif.) Berkeley et Los Angeles, University of California Press]. Zbl0074.09101
- [6] J. L. DOOB, Brownian motion on a Green space (Teoriya Veroyatnosti, t. 2, 1957, p. 3-33). Zbl0078.32505MR21 #5240
- [7] J. L. DOOB, Probability theory and the first boundary value problem (Illinois J. Math. t. 2, 1958, p. 19-36). Zbl0086.08403MR21 #5242
- [8] J. L. DOOB, Boundary limit theorems for a half-space [J. Math. pures et appl. (to appear)]. Zbl0097.34101
- [9] B. V. GNEDENKO and A. N. KOLMOGOROV, Limit distributions for sums of independent random variables (in russian), Moscow, 1949, (in translation) Cambridge, Mass, 1954. Zbl0056.36001
- [10] G. A. HUNT, Markoff processes and potentials I (Illinois J. Math., t. 1, 1957, p. 44-93). Zbl0100.13804MR19,951g
- [11] L. NAÏM, Sur le rôle de la frontière de R. S. Martin dans la théorie du potentiel, Chartres, Durand, 1957 (Thèse Sc. math., Paris, 1957).
Citations in EuDML Documents
top- , Introduction
- Richard F. Bass, Markov processes and convex minorants
- Terry J. Lyons, An application of fine potential theory to prove a Phragmen Lindelöf theorem
- Ross G. Pinsky, The lifetimes of conditioned diffusion processes
- J. Vuolle-Apiala, S. E. Graversen, Duality theory for self-similar processes
- J. L. Doob, A non probabilistic proof of the relative Fatou theorem
- Hélène Airault, Minorantes harmoniques et potentiels - Localisation sur une famille de temps d'arrêt - Réduite forte
- Jean Brossard, Comportement non-tangentiel et comportement brownien des fonctions harmoniques dans un demi-espace. Démonstration probabiliste d'un théorème de Calderon et Stein
- Linda Lumer-Naïm, Sur le théorème de Fatou généralisé
- J. L. Doob, Boundary approach filters for analytic functions
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.